【題目】對于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( 。

A.y值隨x值的增大而增大

B.它的圖象與x軸交點(diǎn)坐標(biāo)為(0,1

C.它的圖象必經(jīng)過點(diǎn)(﹣13

D.它的圖象經(jīng)過第一、二、三象限

【答案】C

【解析】

根據(jù)一次函數(shù)的圖象和性質(zhì),以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,一次函數(shù)解析式系數(shù)的幾何意義,逐一判斷選項(xiàng),即可.

k=﹣20,

y值隨x值的增大而減小,結(jié)論A不符合題意;

∵當(dāng)y0時,﹣2x+10,解得:x,

∴函數(shù)y=﹣2x+1的圖象與x軸交點(diǎn)坐標(biāo)為(,0),結(jié)論B不符合題意;

∵當(dāng)x=﹣1時,y=﹣2x+13

∴函數(shù)y=﹣2x+1的圖象必經(jīng)過點(diǎn)(﹣1,3),結(jié)論C符合題意;

k=﹣20,b10,

∴函數(shù)y=﹣2x+1的圖象經(jīng)過第一、二、四象限,結(jié)論D不符合題意.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAOB,ABx軸于C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)在x軸上存在一點(diǎn)P,使SAOP= SAOB, 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸和軸交于兩點(diǎn),且與正比例函數(shù)的圖象交于點(diǎn).

1)求的值;

2)求正比例函數(shù)的表達(dá)式;

3)點(diǎn)是一次函數(shù)圖象上的一點(diǎn),且的面積是3,求點(diǎn)的坐標(biāo);

4)在軸上是否存在點(diǎn),使的值最。咳舸嬖,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt ABC中,AC=BC,C=90°,DAB邊的中點(diǎn),EDF=90°,EDFD點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC、CB的延長線于EF.下面結(jié)論一定成立的是______.(填序號)

CD=AB;②DE=DF;③SDEF=2SCEF;④SDEF-SCEF=SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰RtABC中,ABAC,∠BAC90°

1)如圖1D,E是等腰RtABC斜邊BC上兩動點(diǎn),且∠DAE45°,將ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90后,得到AFC,連接DF

①求證:AED≌△AFD;

②當(dāng)BE3,CE7時,求DE的長;

2)如圖2,點(diǎn)D是等腰RtABC斜邊BC所在直線上的一動點(diǎn),連接AD,以點(diǎn)A為直角頂點(diǎn)作等腰RtADE,當(dāng)BD3,BC9時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,兩家商店搞促銷活動,甲店:買一只茶壺贈一只茶杯;乙店:按定價的9折優(yōu)惠,某顧客需購買茶壺4只,茶杯若干只(不少于4只).

1)設(shè)購買茶杯數(shù)為(只),在甲店購買的付款為(元),在乙店購買的付款數(shù)為(元),分別寫出在兩家商店購物的付款數(shù)與茶杯數(shù)之間的關(guān)系式;

2)當(dāng)購買多少只茶杯時,兩家商店的花費(fèi)相同?

3)當(dāng)購買20只茶杯時,去哪家商店購物比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AC=BC,點(diǎn)D在△ABC外部,且∠ACB+ADB=180°,連接ABCD.

(1)如圖1,當(dāng)∠ACB=90°時,則∠ADC=______°.

(2)如圖2,當(dāng)∠ACB=60°時,求證:DC平分∠ADB

查看答案和解析>>

同步練習(xí)冊答案