【題目】下列說法,正確的是( 。

A.某事件發(fā)生的概率為,就是說,在兩次重復的試驗中,必有一次發(fā)生

B.一不透明袋子里有100個球,小明摸了8次,每次都只摸到黑球,沒摸到白球,因此小明斷定:袋子里面只有黑球,沒有白球

C.將兩枚一元硬幣同時拋下,可能出現(xiàn)的情形有:(1)兩枚均為正;(2)兩枚均為反;(3)一正一反;所以同時拋擲兩枚硬幣,出現(xiàn)一正一反的概率是

D.八年級共有400名同學,一定會有人同一天過生日

【答案】D

【解析】

根據(jù)概率的意義找到正確選項即可.

A、事件發(fā)生的概率為是在大量實驗數(shù)據(jù)條件下存在的,故A錯誤,

B、可能白球的數(shù)量少,摸到的概率小,故B錯誤,

C、一正一反出現(xiàn)的概率為,故C錯誤,

D、一年最多365天,400名同學,一定會有人同一天過生日,故D正確,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)k10)與一次函數(shù)相交于A、B兩點,ACx軸于點C. OAC的面積為1,且tan∠AOC2 .

1)求出反比例函數(shù)與一次函數(shù)的解析式;

2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA是⊙O的切線,A為切點.B為⊙O上一點,連接AO并延長,交⊙O于點D.交PB的延長線于點C連接PO,若PAPB

1)求證:PB是⊙O的切線;

2)連接DB,若∠C30°,求證:DCO的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線yx2+bx+c經(jīng)過點A2,﹣3)與C0,﹣3),與x軸負半軸的交點為B

1)求拋物線的解析式與點B坐標;

2)若點Dx軸上,使ABD是等腰三角形,求所有滿足條件的點D的坐標;

3)點M在拋物線上,點N在拋物線的對稱軸上,若以A、B、M、N為頂點的四邊形是平行四邊形,其中ABMN,請直接寫出所有滿足條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019423日是中國人民解放軍海軍成立70周年紀念日,屆時將在青島舉行盛大的多國海軍慶;顒樱疄榇宋覈\娺M行了多次軍事演習.如圖,在某次軍事演習時,艦艇A發(fā)現(xiàn)在他北偏東22°方向上有不明敵艦在指揮中心O附近徘徊,快速報告給指揮中心,此時在艦艇A正西方向50海里處的艦艇B接到返回指揮中心的行動指令,艦艇B迅速趕往在他北偏東60°方向的指揮中心處,艦艇B的速度是80海里/小時,請根據(jù)以上信息,求艦艇B到達指揮中心O的時間.(結(jié)果精確到0.1小時,參考數(shù)據(jù):(sin22°≈0.37cos22°≈0.93,tan22°≈0.401.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某活動小組為了估計裝有個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共組進行摸球?qū)嶒灒渲幸晃粚W生摸球,另一位學生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗,匯總起來后,摸到紅球次數(shù)為次.

估計從袋中任意摸出一個球,恰好是紅球的概率是多少?

請你估計袋中紅球接近多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC看,∠BAC=90°,AC=12AB=10,DAC上一個動點,以AD為直徑的⊙O交BDE,則線段CE的最小值是(

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.

(1)抽查D廠家的零件為   件,扇形統(tǒng)計圖中D廠家對應的圓心角為   ;

(2)抽查C廠家的合格零件為   件,并將圖1補充完整;

(3)通過計算說明合格率排在前兩名的是哪兩個廠家;

(4)若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;

(2)求拋物線的解析式;

(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:CEQ∽△CDO;

(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案