【題目】觀察下列等式:(113×12×22;(213+23×22×32;(313+23+33×32×42;(413+23+33+43×42×52;

根據(jù)上述等式的規(guī)律,解答下列問題:

1)寫出第5個等式:_____;

2)寫出第n個等式(用含有n的代數(shù)式表示);

3)設s是正整數(shù)且s≥2,應用你發(fā)現(xiàn)的規(guī)律,化簡:×s2×s+12×s12×s2

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】

(1)根據(jù)從1開始的連續(xù)整數(shù)的立方和等于最后兩個整數(shù)的平方積的可得;

(2)根據(jù)以上規(guī)律可得;

(3)利用所得規(guī)律將原式變形為13+23+33+43+…+s3-[13+23+33+43+…+(s-1)3],據(jù)此計算可得.

(1)第5個等式為13+23+33+43+53×52×62

故答案為:13+23+33+43+53×52×62

2)第n個等式為13+23+33+43+…+n3×n2×n+12;

3)原式=13+23+33+43+…+s3[13+23+33+43+…+s13],

13+23+33+43+…+s313233343﹣(s13,

s3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC.

① 求證:△ABE≌△CBD;

② 若∠CAE30°,求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,
(1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.
(2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE和△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3 , 繼續(xù)操作下去…,則第10次剪取時,s10=;
(3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E是△ABC內(nèi)兩點,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,則BC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的情景對話,然后解答問題:

(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(不與點A、B重合),D是半圓 的中點,C、D在直徑AB的兩側,若在⊙O內(nèi)存在點E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
②當△ACE是直角三角形時,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一塊直角三角板OAB放在平面直角坐標系中,B(2,0),∠AOB=60°,點A在第一象限,過點A的雙曲線為 .在x軸上取一點P,過點P作直線OA的垂線l,以直線l為對稱軸,線段OB經(jīng)軸對稱變換后的像是O′B′.
(1)當點O′與點A重合時,點P的坐標是
(2)設P(t,0),當O′B′與雙曲線有交點時,t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 A,OB 在同一條直線上,OD,OE 分別平分∠AOC 和∠BOC

(1)求∠DOE 的度數(shù);

(2)如果∠COD=65°,求∠AOE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.

查看答案和解析>>

同步練習冊答案