【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

【答案】(1)證明見解析;(2);(3)OE=2﹣4.

【解析】

1)要證PG與⊙O相切只需證明∠OBG=90°,由∠A與∠BDC是同弧所對圓周角且∠BDC=DBO可得∠CBG=DBO,結(jié)合∠DBO+OBC=90°即可得證;

(2)求需將BEOCOC相等線段放入兩三角形中,通過相似求解可得,作OMAC、連接OA,證BEF∽△OAM,由AM=AC、OA=OC,結(jié)合即可得;

(3)RtDBC中求得BC=8、DCB=30°,在RtEFC中設(shè)EF=x,知EC=2x、FC=x、BF=8x,繼而在RtBEF中利用勾股定理求出x的,從而得出答案.

1)如圖,連接OB,則OB=OD,

∴∠BDC=DBO,

∵∠BAC=BDC、BDC=GBC,

∴∠GBC=BDC,

CD是⊙O的切線,

∴∠DBO+OBC=90°,

∴∠GBC+OBC=90°,

∴∠GBO=90°,

PG與⊙O相切;

(2)過點OOMAC于點M,連接OA,

則∠AOM=COM=AOC,

∴∠ABC=AOC,

又∵∠EFB=OGA=90°,

∴△BEF∽△OAM,

AM=AC,OA=OC,

又∵,

;

(3)PD=OD,PBO=90°,

BD=OD=8,

RtDBC中,BC==8,

又∵OD=OB,

∴△DOB是等邊三角形,

∴∠DOB=60°,

∵∠DOB=OBC+OCB,OB=OC,

∴∠OCB=30°,

,=,

∴可設(shè)EF=x,則EC=2x、FC=x,

BF=8x,

RtBEF中,BE2=EF2+BF2

100=x2+(8x)2,

解得:x=6±

6+>8,舍去,

x=6﹣,

EC=12﹣2,

OE=8﹣(12﹣2)=2﹣4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.

(1)線段AE=____________;

(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點F.

①當α=30°時,請求出線段AF的長;

②當α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關(guān)系,并說明理由;

③當α=___________°時,DM與⊙O相切。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,邊長為10cm,點E在AB邊上,BE=6cm.如果點P在線段BC上以4cm/秒的速度由B點向C點運動,同時,點Q在線段CD上以acm/秒的速度由C點向D點運動,設(shè)運動的時間為t秒,

(1)CP的長為 cm(用含t的代數(shù)式表示);

(2)若以E、B、P為頂點的三角形和以P、C、Q為頂點的三角形全等,求a的值.

(3)若點Q以(2)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿正方形ABCD四邊運動.則點P與點Q會不會相遇?若不相遇,請說明理由.若相遇,求出經(jīng)過多長時間點P與點Q第一次在正方形ABCD的何處相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A,Bx軸上,且關(guān)于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點E,F(xiàn),若SBEF=7,k1+3k2=0,則k1等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10分)對于平面直角坐標系xOy中的點P(ab),若點P的坐標為(akab)(k為常數(shù),k≠0),則稱點P′為點P的“k屬派生點”.例如:P(1,4)的“2屬派生點”為P′(1+,2×1+4),即P′(3,6).

(1) ① 點P(-1,-2)的“2屬派生點”P′的坐標為_______________

② 若點P的“k屬派生點”為P′(3,3),請寫出一個符合條件的點P的坐標_____________

(2) 若點Px軸的正半軸上,點P的“k屬派生點”為P′點,且△OPP′為等腰直角三角形,則k的值為____________

(3) 如圖,點Q的坐標為(0, ),點A在函數(shù)x<0)的圖象上,且點A是點B的“屬派生點”.當線段BQ最短時,求B點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖要求:、過直線外一點作這條直線的垂線;、作線段的垂直平分線;

、過直線上一點作這條直線的垂線;、作角的平分線.

如圖是按上述要求排亂順序的尺規(guī)作圖:

則正確的配對是( 。

A. ﹣Ⅳ,﹣Ⅱ,﹣Ⅰ,﹣Ⅲ B. ﹣Ⅳ,﹣Ⅲ,﹣Ⅱ,﹣Ⅰ

C. ﹣Ⅱ,﹣Ⅳ,﹣Ⅲ,﹣Ⅰ D. ﹣Ⅳ,﹣Ⅰ,﹣Ⅱ,﹣Ⅲ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtCEF中,∠C=90°,∠CEF, CFE外角平分線交于點A,過點A分別作直線CE、CF的垂線,B、D為垂足.

(1)求證:四邊形ABCD是正方形,

(2)已知AB的長為6,求(BE+6)(DF+6)的值,

(3)借助于上面問題的解題思路,解決下列問題:若三角形PQR中,∠QPR=45°,一條高是PH,長度為6,QH=2,則HR= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,階梯圖的每個臺階上都標著一個數(shù),從下到上的第1個至第4個臺階上依次標著﹣5,﹣2,1,9,且任意相鄰四個臺階上數(shù)的和都相等.

嘗試 (1)求前4個臺階上數(shù)的和是多少?

(2)求第5個臺階上的數(shù)x是多少?

應(yīng)用 求從下到上前31個臺階上數(shù)的和.

發(fā)現(xiàn) 試用含k(k為正整數(shù))的式子表示出數(shù)“1”所在的臺階數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,高ADBE所在的直線交于點H,且BH=AC,則∠ABC等于( )

A. 45° B. 120° C. 45°135° D. 45°120°

查看答案和解析>>

同步練習冊答案