【題目】已知拋物線y=ax2+bx+c與反比例函數y= 的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數y=bx+ac的圖象可能是( )
A.
B.
C.
D.
【答案】B
【解析】解:∵拋物線y=ax2+bx+c與反比例函數y= 的圖象在第一象限有一個公共點, ∴b>0,
∵交點橫坐標為1,
∴a+b+c=b,
∴a+c=0,
∴ac<0,
∴一次函數y=bx+ac的圖象經過第一、二、三象限.
故選:B.
【考點精析】掌握一次函數的圖象和性質和反比例函數的性質是解答本題的根本,需要知道一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減。 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大.
科目:初中數學 來源: 題型:
【題目】如圖①,AD為等腰直角△ABC的高,點A和點C分別在正方形DEFG的邊DG和DE上,連接BG,AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點D旋轉,當線段EG經過點A時,(如圖②所示)
①求證:BG⊥GE;
②設DG與AB交于點M,若AG:AE=3:4,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為調查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調查,要求被調查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調查結果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:
(1)在這次調查中,一共調查了名市民,扇形統(tǒng)計圖中,C組對應的扇形圓心角是°;
(2)請補全條形統(tǒng)計圖;
(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B,C,D是⊙O上的四個點,B是 的中點,M是半徑OD上任意一點.若∠BDC=40°,則∠AMB的度數不可能是( )
A.45°
B.60°
C.75°
D.85°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點,與y軸的正半軸交于點C,其頂點為D.
(1)寫出C,D兩點的坐標(用含a的式子表示);
(2)設S△BCD:S△ABD=k,求k的值;
(3)當△BCD是直角三角形時,求對應拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC和△DEF(頂點為網格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,點M邊AB的中點.
(1)如圖1,點G為線段CM上的一點,且∠AGB=90°,延長AG、BG分別與邊BC、CD交于點E、F.
①求證:BE=CF;
②求證:BE2=BCCE.
(2)如圖2,在邊BC上取一點E,滿足BE2=BCCE,連接AE交CM于點G,連接BG并延長CD于點F,求tan∠CBF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并解決后面的問題. 材料:我們知道,n個相同的因數a相乘 可記為an , 如23=8,此時,3叫做以2為底8的對數,記為log28(即log28=3),一般地,若an=b (a>0且a≠1,b>0),則n叫做以a為底b的對數,記為logab(即logab=n).如34=81,則4叫做以3為底81的對數,記為log381(即log381=4)
(1)計算以下各對數的值:log24= , log216= , log264= .
(2)觀察(1)中三數4、16、64之間滿足怎樣的關系式?log24、log216、log264之間又滿足怎樣的關系式?
(3)根據(2)的結果,我們可以歸納出:logaM+logaN=logaM N(a>0且a≠1,M>0,N>0) 請你根據冪的運算法則:am=am+n以及對數的定義證明該結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測得∠CAO=45°,輪船甲自西向東勻速行駛,同時輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經過0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測得∠DBO=58°,此時B處距離碼頭O多遠?(參考數據:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com