【題目】如圖①,AD為等腰直角△ABC的高,點A和點C分別在正方形DEFG的邊DG和DE上,連接BG,AE.
(1)求證:BG=AE;
(2)將正方形DEFG繞點D旋轉,當線段EG經過點A時,(如圖②所示)
①求證:BG⊥GE;
②設DG與AB交于點M,若AG:AE=3:4,求 的值.
【答案】
(1)
證明:如圖①,
∵AD為等腰直角△ABC的高,
∴AD=BD,
∵四邊形DEFG為正方形,
∴∠GDE=90°,DG=DE,
在△BDG和△ADE中
,
∴△BDG≌△ADE,
∴BG=AE;
(2)
①證明:如圖②,
∵四邊形DEFG為正方形,
∴△DEG為等腰直角三角形,
∴∠1=∠2=45°,
由(1)得△BDG≌△ADE,
∴∠3=∠2=45°,
∴∠1+∠3=45°+45°=90°,即∠BGE=90°,
∴BG⊥GE;
②解:設AG=3x,則AE=4x,即GE=7x,
∴DG= GE= x,
∵△BDG≌△ADE,
∴BG=AE=4x,
在Rt△BGA中,AB= = =5x,
∵△ABD為等腰直角三角形,
∴∠4=45°,BD= AB= x,
∴∠3=∠4,
而∠BDM=∠GDB,
∴△DBM∽△DGB,
∴BD:DG=DM:BD,即 x: x=DM: x,解得DM= x,
∴GM=DG﹣DM= x﹣ x= x,
∴ = = .
【解析】(1)如圖①,根據(jù)等腰直角三角形的性質得AD=BD,再根據(jù)正方形的性質得∠GDE=90°,DG=DE,則可根據(jù)“SAS“判斷△BDG≌△ADE,于是得到BG=AE;(2)①如圖②,先判斷△DEG為等腰直角三角形得到∠1=∠2=45°,再由△BDG≌△ADE得到∠3=∠2=45°,則可得∠BGE=90°,所以BG⊥GE;
②設AG=3x,則AE=4x,即GE=7x,利用等腰直角三角形的性質得DG= GE= x,由(1)的結論得BG=AE=4x,則根據(jù)勾股定理得AB=5x,接著由△ABD為等腰直角三角形得到∠4=45°,BD= AB= x,然后證明△DBM∽△DGB,則利用相似比可計算出DM= x,所以GM= x,于是可計算出 的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答:
(1)把△ABC繞點P旋轉180°得△A′B′C.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經過點A(-1,-2).則當x>1時,函數(shù)值y的取值范圍是( )
A.y>1
B.0<y<1
C.y>2
D.0< y<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= 的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求此反比例函數(shù)和一次函數(shù)的表達式;
(2)求點C的坐標及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,Rt△ABC,∠ACB=90°,BC=6,AC=8,O為BC延長線上一點,CO=3,過O,A作直線l,將l繞點O逆時針旋轉,l與AB交于點D,與AC交于點E,當l與OB重合時,停止旋轉;過D作DM⊥AE于M,設AD=x,S△ADE=S.
(1)用含x的代數(shù)式表示DM,AM的長;
(2)當直線l過AC中點時,求x的值;
(3)用含x的代數(shù)式表示AE的長;
(4)求S與x之間的函數(shù)關系式;
(5)當x為多少時,DO⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與反比例函數(shù)y= 的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)y=bx+ac的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com