【題目】列方程或方程組解應(yīng)用題:

從A地到B地有兩條行車路線:

路線一:全程30千米,但路況不太好;

路線二:全程36千米,但路況比較好,

一般情況下走路線二的平均車速是走路線一的平均車速的1.8倍,走路線二所用的時(shí)間比走路線一所用的時(shí)間少20分鐘.那么走路線二的平均車速是每小時(shí)多少千米?

【答案】走路線二的平均車速是54km/h.

【解析】試題分析:方程的應(yīng)用解題關(guān)鍵是找出等量關(guān)系,列出方程求解,本題等量關(guān)系為:走路線二所用的時(shí)間比走路線一所用的時(shí)間少20分鐘.

設(shè)走路線一的平均車速是每小時(shí)x千米,則走路線二平均車速是每小時(shí)1.8x千米.

由題意,得

解方程,得 x =30

經(jīng)檢驗(yàn),x=30是原方程的解,且符合題意.

所以 1.8x=54

答:走路線二的平均車速是每小時(shí)54千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】11·漳州)(滿分8分)漳州市某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:

1)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若一般優(yōu)秀均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有_ ▲ 人達(dá)標(biāo);

3)若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列判斷錯(cuò)誤的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,以BC為邊向外作BCD并連接AD,把ABD繞著點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到ECD,且點(diǎn)A,C,E在一條直線上,若AB=3,AC=2,求BAD的度數(shù)與AD的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張四邊形紙片ABCD,∠A50°,∠C150°.若將其按照?qǐng)D所示方式折疊后,恰好MD′∥AB,ND′∥BC,則∠D的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ADBCBO,CO分別平分ABC,DCB,若A+D=n°,則BOC= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,購(gòu)買一種蘋果,所付款金額y(元)與購(gòu)買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購(gòu)買3千克這種蘋果比分三次每次購(gòu)買1千克這種蘋果可節(jié)。
A.1元
B.2元
C.3元
D.4元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,E是⊙O外一點(diǎn),過(guò)點(diǎn)E作⊙O的兩條切線ED、EB,切點(diǎn)分別為點(diǎn)D,B,連接AD并延長(zhǎng)交BE延長(zhǎng)線于點(diǎn)C,連接OE.
(1)試判斷OE與AC的關(guān)系,并說(shuō)明理由;
(2)填空: ①當(dāng)∠BAC=時(shí),四邊形ODEB是正方形.
②當(dāng)∠BAC=30°時(shí), 的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案