精英家教網(wǎng)如圖,在Rt△ABC中,∠BCA=90°,CD是高,已知Rt△ABC的三邊長(zhǎng)都是整數(shù)且BD=113,求Rt△BCD與Rt△ACD的周長(zhǎng)之比.
分析:根據(jù)題意易證△BCD∽△BAC,利用相似三角形的性質(zhì)及勾股定理列式,解方程組即可解答.
解答:解:設(shè)BC=a,CA=b,AB=c,
∵Rt△BCD∽R(shí)t△BAC,
BC
BA
=
BD
BC
,即BC2=BD•BA,
∴a2=113c.
因a2為完全平方數(shù),且11是質(zhì)數(shù),
∴c為11的倍數(shù),令c=11k2(k為正整數(shù)),則a=112k,
于是由勾股定理得b=
c2-a2
=11k
k2-112
,又因?yàn)閎為整數(shù),
∴k2-112是完全平方數(shù),令k2-112=m2,則(k+m)(k-m)=112,
∵(k+m)>(k-m)>0且11為質(zhì)數(shù),
k+m=112
k-m=1
 解得 
k=61
m=60
,于是a=112×61,b=11×61×60,
又∵Rt△BCD∽R(shí)t△CAD,
∴它們周長(zhǎng)的比等于它們的相似比.
a
b
=
112×61
11×61×60
=
11
60
點(diǎn)評(píng):解答此題是要根據(jù)題意列出方程,把解三角形轉(zhuǎn)化成解方程的形式解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案