【題目】如圖,四 邊形OABC是矩形,點A、C在坐標(biāo)軸上,△ODE是由△OCB繞點O順時針旋轉(zhuǎn)90°得到的,點D在X軸上,直線BD交Y軸于點F,交OE于點H,線段BC、OC的長是方程x2-6x+8=0的兩個根,且OC>BC.
(1)求直線BD的解析式.
(2)求 △OFH的面積.
(3)點M在坐標(biāo)軸上,平面內(nèi)是否存在點N,使以點D、F、M、N為頂點的四邊形是矩形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.
【答案】解:y=-x+;(2);(3)存在滿足條件的N點,其坐標(biāo)為(,-)或(-4,-)或(4,).
【解析】
(1)解方程可求得OC、BC的長,可求得B、D的坐標(biāo),利用待定系數(shù)法可求得直線BD的解析式;
(2)可求得E點坐標(biāo),求出直線OE的解析式,聯(lián)立直線BD、OE解析式可求得H點的橫坐標(biāo),可求得△OFH的面積;
(3)當(dāng)△MFD為直角三角形時,可找到滿足條件的點N,分∠MFD=90°、∠MDF=90°和∠FMD=90°三種情況,分別求得M點的坐標(biāo),可分別求得矩形對角線的交點坐標(biāo),再利用中點坐標(biāo)公式可求得N點坐標(biāo).
(1)解方程x2-6x+8=0可得x=2或x=4,
∵BC、OC的長是方程x2-6x+8=0的兩個根,且OC>BC,
∴BC=2,OC=4,
∴B(-2,4),
∵△ODE是△OCB繞點O順時針旋轉(zhuǎn)90°得到的,
∴OD=OC=4,DE=BC=2,
∴D(4,0),
設(shè)直線BD解析式為y=kx+b,
把B、D坐標(biāo)代入可得,解得,
∴直線BD的解析式為y=-x+;
(2)由(1)可知E(4,2),
設(shè)直線OE解析式為y=mx,
把E點坐標(biāo)代入可求得m=,
∴直線OE解析式為y=x,
令,解得x=,
∴H點到y軸的距離為,
又由(1)可得F(0,),
∴OF=,
∴S△OFH=××=;
(3)∵以點D、F、M、N為頂點的四邊形是矩形,
∴△DFM為直角三角形,
①當(dāng)∠MFD=90°時,則M只能在x軸上,連接FN交MD于點G,如圖1,
由(2)可知OF=,OD=4,
則有△MOF∽△FOD,
∴,即,解得OM=,
∴M(-,0),且D(4,0),
∴G(,0),
設(shè)N點坐標(biāo)為(x,y),則,,
解得x=,y=-,此時N點坐標(biāo)為(,-);
②當(dāng)∠MDF=90°時,則M只能在y軸上,連接DN交MF于點G,如圖2,
則有△FOD∽△DOM,
∴,即,解得OM=6,
∴M(0,-6),且F(0,),
∴MG=MF=,則OG=OM-MG=6-=,
∴G(0,-),
設(shè)N點坐標(biāo)為(x,y),則 =0,,
解得x=-4,y=-,此時N(-4,-);
③當(dāng)∠FMD=90°時,則可知M點為O點,如圖3,
∵四邊形MFND為矩形,
∴NF=OD=4,ND=OF=,
可求得N(4,);
綜上可知存在滿足條件的N點,其坐標(biāo)為(,-)或(-4,-)或(4,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關(guān)系
如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,是過點的一條直線,點關(guān)于直線的對稱點為,連接,,,其中,分別交直線于點,.
(1)若(),請用的代數(shù)式表示;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海靜中學(xué)開展以“我最喜愛的職業(yè)”為主題的調(diào)查活動,圍繞“在演員、教師、醫(yī)生、律師、公務(wù)員共五類職業(yè)中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)求在被調(diào)查的學(xué)生中,最喜愛教師職業(yè)的人數(shù),并補(bǔ)全條形統(tǒng)計圖;
(3)若海靜中學(xué)共有1500名學(xué)生,請你估計該中學(xué)最喜愛律師職業(yè)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(6,0),B(0,4),點B關(guān)于x軸的對稱點為C點,點D在x軸的負(fù)半軸上,△ABD的面積是30.
(1)求點D坐標(biāo);
(2)若動點P從點B出發(fā),沿射線BC運動,速度為每秒1個單位,設(shè)P的運動時間為t秒,△APC的面積為S,求S與t的關(guān)系式;
(3)在(2)的條件下,同時點Q從D點出發(fā)沿x軸正方向以每秒2個單位速度勻速運動,若點R在過A點且平行于y軸的直線上,當(dāng)△PQR為以PQ為直角邊的等腰直角三角形時,求滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)把△ABC向上平移3個單位,再向右平移2個單位得△A′B′C′,在圖中畫出兩次平移后得到的圖形△A′B′C′,并寫出A′、B′、C′的坐標(biāo).
(2)如果△ABC內(nèi)部有一點Q,根據(jù)(1)中所述平移方式得到對應(yīng)點Q′,如果點Q′坐標(biāo)是(m,n),那么點Q的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,均是邊長為的等邊三角形,點是邊、的中點,直線、相交于點.當(dāng)繞點旋轉(zhuǎn)時,線段長的最小值是( )
A. 2- B. +1 C. D. -1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】永州市在進(jìn)行“六城同創(chuàng)”的過程中,決定購買兩種樹對某路段進(jìn)行綠化改造,若購買種樹2棵, 種樹3棵,需要2700元;購買種樹4棵, 種樹5棵,需要4800元.
(1)求購買兩種樹每棵各需多少元?
(2)考慮到綠化效果,購進(jìn)A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元.若購進(jìn)這兩種樹共100棵.問有哪幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com