【題目】如圖,四邊形ABCD是⊙O的內接四邊形,,AC為直徑,DEBC,垂足為E.

(1)求證:CD平分∠ACE;

(2)若AC=9,CE=3,求CD的長.

【答案】(1)證明見解析;(2)

【解析】分析: (1)根據(jù)圓內接四邊形的性質得到∠DCE=∠BAD,根據(jù)圓周角定理得到∠DCE=∠BAD,證明即可;

(2)證明△DCE∽△ACD,根據(jù)相似三角形的性質列出比例式,計算即可.

詳解:

(1)證明:∵四邊形ABCD是⊙O內接四邊形,

∴∠BAD+BCD=180°,

∵∠BCD+DCE=180°,

∴∠DCE=BAD,

=,

∴∠BAD=ACD,

∴∠DCE=ACD,

CD平分∠ACE;

(2)解:∵AC為直徑,

∴∠ADC=90°,

DEBC,

∴∠DEC=90°,

∴∠DEC=ADC,

∵∠DCE=ACD,

∴△DCE∽△ACD,

=,即=

CD=3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C,D的坐標分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與ABC相似,則點E的坐標不可能是

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B、C、D在同一直線上,△ABC△ECD都是等邊三角形,BEAD相交于點M,

(1)求證:∠CBE=∠CAD;

(2)由(1)可知,圖中的△EBC是由△DAC怎樣變換(填一種變換)得到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大圓的弦ABAC分別切小圓于點M、N

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結AEDE、DC

①求證:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.

(1)求這條直線的解析式及點B的坐標;

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC,點O為坐標原點,點Ay軸正半軸上,點Cx軸正半軸上,OA4,OC6,點EOC的中點,將△OAE沿AE翻折,使點O落在點O處,作直線CO',則直線CO'的解析式為(  )

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標軸交于A,B,C三點,點A的橫坐標為﹣1,過點C(0,3)的直線y=﹣x+3x軸交于點Q,點P是線段BC上的一個動點,PHOB于點H.若PB=5t,且0<t<1.

(1)確定b,c的值;

(2)寫出點B,Q,P的坐標(其中Q,P用含t的式子表示);

(3)依點P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一座拋物線形拱橋,正常水位時橋下水面寬為20m,拱頂距水面4m.

(1)在如圖的直角坐標系中,求出該拋物線的解析式;

(2)為保證過往船只順利航行,橋下水面寬度不得小于18m,求水面在正常水位基礎上,最多漲多少米,不會影響過往船只?

查看答案和解析>>

同步練習冊答案