【題目】已知拋物線與軸交于點(diǎn),其關(guān)于軸對(duì)稱(chēng)的拋物線為:,且經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線沿軸向右平移得到拋物線,拋物線與軸的交點(diǎn)記為點(diǎn)和點(diǎn)(在的右側(cè)),與軸交于點(diǎn),如果滿(mǎn)足與相似,請(qǐng)求出平移后拋物線的表達(dá)式.
【答案】(1)的解析式為;(2)平移后拋物線的表達(dá)式為或.
【解析】
(1)根據(jù)拋物線關(guān)于軸對(duì)稱(chēng)的原則可以得到均互為相反數(shù),所以可以設(shè):,同時(shí)經(jīng)過(guò)點(diǎn)和點(diǎn),那么也經(jīng)過(guò)點(diǎn)和點(diǎn),將這兩點(diǎn)代入即可求解;
(2)首先根據(jù)函數(shù)圖像的平移原則,設(shè)拋物線沿軸向右平移個(gè)單位得到拋物線
,繼而寫(xiě)出的解析式,然后分別求出點(diǎn)和點(diǎn)的坐標(biāo),再結(jié)合與相似,可得△DOQ為等腰直角三角形,利用坐標(biāo)建立方程,求解即可.
解:(1)拋物線和拋物線關(guān)于軸對(duì)稱(chēng),且:,
: ,
經(jīng)過(guò)點(diǎn)和點(diǎn),
經(jīng)過(guò)點(diǎn)和點(diǎn),
把點(diǎn)和點(diǎn)代入:可得:
,
解得:,
:;
(2)設(shè)拋物線沿軸向右平移個(gè)單位得到拋物線,
:,
的解析式可以表示為:
,
拋物線與軸的交點(diǎn)為點(diǎn)和點(diǎn),且在的右側(cè),
,
拋物線與軸交于點(diǎn),
,
∵A(-3,0),C(0,3),
∴△AOC為等腰直角三角形,
∴當(dāng)△AOC和△DOQ相似時(shí),
△DOQ為等腰直角三角形,
∴OQ=OD,
當(dāng)點(diǎn)Q在y軸正半軸上時(shí),
OQ=OD=OA=OC,
∴,
解得:a=0(舍)或2,
此時(shí):;
當(dāng)點(diǎn)Q在y軸負(fù)半軸時(shí),
OD=OQ,
則,
解得:a=-1(舍)或4,
此時(shí):;
綜上:平移后拋物線W3的表達(dá)式為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,是邊上一動(dòng)點(diǎn),連接,作交于,已知,,設(shè)的長(zhǎng)度為,的長(zhǎng)度為.
小青同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小青同學(xué)的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了的幾組對(duì)應(yīng)值:
0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 | |
0 | 1.56 | 2.24 | 2.51 | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
的值約為__________;
(2)在平面直角坐標(biāo)系中,描出已補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:
①當(dāng)時(shí),對(duì)應(yīng)的的取值范圍約是_____________;
②若點(diǎn)不與,兩點(diǎn)重合,是否存在點(diǎn),使得?________________(填“存在”或“不存在”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)與點(diǎn)在的同側(cè),且.
(1)如圖1,點(diǎn)不與點(diǎn)重合,連結(jié)交于點(diǎn).設(shè)求關(guān)于的函數(shù)解析式,寫(xiě)出自變量的取值范圍;
(2)是否存在點(diǎn),使與相似,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,過(guò)點(diǎn)作垂足為.將以點(diǎn)為圓心,為半徑的圓記為.若點(diǎn)到上點(diǎn)的距離的最小值為,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把八個(gè)完全相同的小球平分為兩組,每組中每個(gè)分別寫(xiě)上1,2,3,4四個(gè)數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個(gè)口袋內(nèi)取出一個(gè)數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再?gòu)牡诙䝼(gè)口袋中取出一個(gè)球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,過(guò)其中一個(gè)頂點(diǎn)的直線把分成兩個(gè)等腰三角形.
(1)如圖1,若求的值;
(2) 度(除外) ;
(3)如圖2,為銳角,在延長(zhǎng)線上,在邊上,平分交于請(qǐng)求線段三者之者的數(shù)量關(guān)系. (用表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)是2,∠EAF=m°,將∠EAF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交BC、CD于點(diǎn)E、F,G是CB延長(zhǎng)線上一點(diǎn),且始終保持BG=DF.
(1)求證:△ABG≌△ADF;
(2)求證:AG⊥AF;
(3)當(dāng)EF=BE+DF時(shí):
①求m的值;
②若F是CD的中點(diǎn),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=.(其中mk≠0)圖象交于A(﹣4,2),B(2,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△ABO的面積;
(3)請(qǐng)直接寫(xiě)出當(dāng)一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過(guò)點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫(xiě)出線段CK長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com