【題目】解答題。
(1)計(jì)算:|﹣2|﹣ +(﹣2)2﹣( 0;
(2)解不等式組 ,并求其最小整數(shù)解.

【答案】
(1)解:原式=2﹣ + ﹣1=1
(2)解: ,

由①得x≥﹣1;由②得x>﹣5,

∴不等式組的解集為x≥﹣1,

則最小整數(shù)解為﹣1


【解析】(1)原式利用絕對(duì)值的代數(shù)意義,算術(shù)平方根定義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則計(jì)算即可得到結(jié)果;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分確定出不等式組的解集,即可確定出最小的整數(shù)解.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的解法和一元一次不等式組的整數(shù)解的相關(guān)知識(shí)點(diǎn),需要掌握解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 );使不等式組中的每個(gè)不等式都成立的未知數(shù)的值叫不等式組的解,一個(gè)不等式組的所有的解組成的集合,叫這個(gè)不等式組的解集(簡(jiǎn)稱不等式組的解)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康,太原市會(huì)持續(xù)出現(xiàn)霧霾天氣嗎?在2016年2月周末休息期間,某校九年級(jí)1班綜合實(shí)踐小組的同學(xué)以“霧霾天氣的主要成因”為主題,隨機(jī)調(diào)查了太原市部分市民的觀點(diǎn),并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計(jì)圖表,觀察并回答下列問題:

類別

霧霾天氣的主要成因

百分比

A

工業(yè)污染

45%

B

汽車尾氣排放

m

C

城中村燃煤?jiǎn)栴}

15%

D

其他(綠化不足等)

n


(1)請(qǐng)你求出本次被調(diào)查市民的人數(shù)及m,n的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若太原市有300萬人口,請(qǐng)你估計(jì)持有A,B兩類看法的市民共有多少人?
(3)學(xué)校要求小穎同學(xué)在A,B,C,D這四個(gè)霧霾天氣的主要成因中,隨機(jī)抽取兩項(xiàng)作為課題研究的項(xiàng)目進(jìn)行考察分析,請(qǐng)用畫樹狀圖或列表的方法,求出小穎同學(xué)剛好抽到B(汽車尾氣排放),C(城中村燃煤?jiǎn)栴})的概率.(用A,B,C,D表示各項(xiàng)目)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與思考 婆羅摩笈多(Brahmagupta),是一位印度數(shù)學(xué)家和天文學(xué)家,書寫了兩部關(guān)于數(shù)學(xué)和天文學(xué)的書籍,他的一些數(shù)學(xué)成就在世界數(shù)學(xué)史上有較高的地位,他的負(fù)數(shù)概念及加減法運(yùn)算僅晚于中國(guó)《九章算術(shù)》,而他的負(fù)數(shù)乘除法法則在全世界都是領(lǐng)先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及部分證明過程如下:
已知:如圖1,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC⊥BD于點(diǎn)P,PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,求證:CN=DN.
證明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…

(1)請(qǐng)你閱讀婆羅摩笈多定理的證明過程,完成剩余的證明部分.
(2)已知:如圖2,△ABC內(nèi)接于⊙O,∠B=30°,∠ACB=45°,AB=2,點(diǎn)D在⊙O上,∠BCD=60°,連接AD,與BC交于點(diǎn)P,作PM⊥AB于點(diǎn)M,延長(zhǎng)MP交CD于點(diǎn)N,則PN的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知當(dāng)x1=a,x2=b,x3=c時(shí),二次函數(shù)y= x2+mx對(duì)應(yīng)的函數(shù)值分別為y1 , y2 , y3 , 若正整數(shù)a,b,c恰好是一個(gè)三角形的三邊長(zhǎng),且當(dāng)a<b<c時(shí),都有y1<y2<y3 , 則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),拋物線y=﹣x2+bx+c(c>0)的頂點(diǎn)為D,與y軸的交點(diǎn)為C,過點(diǎn)C作CA∥x軸交拋物線于點(diǎn)A,在AC延長(zhǎng)線上取點(diǎn)B,使BC= AC,連接OA,OB,BD和AD.

(1)若點(diǎn)A的坐標(biāo)是(﹣4,4).
①求b,c的值;
②試判斷四邊形AOBD的形狀,并說明理由;
(2)是否存在這樣的點(diǎn)A,使得四邊形AOBD是矩形?若存在,請(qǐng)直接寫出一個(gè)符合條件的點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波火車站北廣場(chǎng)將于2015年底投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為BC邊上的點(diǎn),反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D(m,2)和AB邊上的點(diǎn)E(3, ).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點(diǎn)O于點(diǎn)D重合,折痕分別與x軸、y軸正半軸交于點(diǎn)F,G,求折痕FG所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列做法正確的是(  )

A. 方程=1+去分母,2(2x-1)=1+3(x-3)

B. 方程4x=7x-8移項(xiàng),4x-7x=8

C. 方程3(5x-1)-2(2x-3)=7去括號(hào),15x-3-4x-6=7

D. 方程1-x=3x+移項(xiàng),-x-3x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一學(xué)校為了解九年級(jí)學(xué)生某次體育測(cè)試成績(jī),現(xiàn)對(duì)這次體育測(cè)試成績(jī)進(jìn)行抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C組所在的扇形的圓心角為36° 被抽取的體育測(cè)試成績(jī)頻數(shù)分布表

組別

成績(jī)

頻數(shù)

A

20<x≤24

2

B

24<x≤28

3

C

28<x≤32

5

D

32<x≤36

b

E

36<x≤40

20

合計(jì)

a

根據(jù)上面的圖表提供的信息,回答下列問題:

(1)計(jì)算頻數(shù)分布表中a與b的值;
(2)根據(jù)C組28<x≤32的組中值30,估計(jì)C組中所有數(shù)據(jù)的和為
(3)請(qǐng)估計(jì)該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)的平均分(結(jié)果取整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案