【題目】如圖,菱形ABCD中,分別延長DC,BC至點EF,使CE=CD,CF=CB,連接DB,BE,EF,FD

1)求證:四邊形DBEF是矩形;

2)如果∠A60°,DF的長為,求菱形ABCD的面積.

【答案】1)見解析;(28

【解析】

1)根據(jù)菱形的性質(zhì)結(jié)合題意,得出CE=CD=CF=CB,再根據(jù)矩形的判定證明即可.

2)連接ACBD于點O,已知四邊形ABCD是菱形,可得OCBD,OB=OD,求得OC的長,已知∠A60°,可知∠DCO=30°,在RtDOC中,根據(jù)30°角的正切值可求得OD長,進(jìn)而求出菱形ABCD的面積.

1)∵CE=CDCF=CB

∴四邊形DBEF是平行四邊形

∵四邊形ABCD是菱形

CD=CB

CE=CF

BF=DE

∴四邊形DBEF是矩形

2)連接ACBD于點O

∵四邊形ABCD是菱形

OCBD,OB=OD

∵四邊形DBEF是矩形

BC=CF

OC=DF=

∵∠A60°

∴∠DCO=OCB=DCB=A×60°30°

RtDOC中,

OD=2

S菱形ABCD=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在⊙O上,聯(lián)結(jié)CO并延長交弦AB于點D, ,聯(lián)結(jié)AC、OB,若CD=40,AC=20

(1)求弦AB的長;

(2)求sin∠ABO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,對于任意兩點,,若點滿足,,那么稱點是點,的融合點.

例如:,當(dāng)點滿是,時,則點是點,的融合點,

1)已知點,,,請說明其中一個點是另外兩個點的融合點.

2)如圖,點,點是直線上任意一點,點是點,的融合點.

①試確定的關(guān)系式.

②若直線軸于點,當(dāng)為直角三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBFAC平分∠BAD,且交BF于點CBD平分∠ABC,且交AE于點D,連接CD,求證:

1ACBD

2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,連接EFCF,則下列結(jié)論:(1)∠DCF=BCD;(2EF=CF;(3SBEC= 2SCEF;(4)∠DFE=3AEF;其中正確的結(jié)論是(

A.1)(2B.1)(2)(4C.2)(3)(4D.1)(3)(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.

1)每支鋼筆與每本字帖分別多少元?

2)帥帥在六一節(jié)當(dāng)天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:

①所購商品均打九折

②買一支鋼筆贈送一本字帖

帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:

)一次買5支鋼筆和15本字帖,然后按九折付費;

)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;

)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費;問帥帥最少要付多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的弦,OPOA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.

(1)求證:BC是O的切線;

(2)若O的半徑為3,OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某織布廠有150名工人,為了提高經(jīng)濟(jì)效益,增設(shè)制衣項目,已知每人每天能織布30m,或利用所織布制衣4,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項工作,且不計其他因素,設(shè)安排x名工人制衣.

(1)一天中制衣所獲利潤P是多少(用含x的式子表示);

(2)一天中剩余布所獲利潤Q是多少 (用含x的式子表示);.

(3)一天當(dāng)中安排多少名工人制衣時,所獲利潤為11806?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三個頂點的坐標(biāo)分別為,,

1)若將△ABC 向右平移三個單位長度得到△A1B1C1,則點 A1 的坐標(biāo)為________

2)若△ABC 與△A2B2C2 關(guān)于原點 O 成中心對稱,則點 A2 的坐標(biāo)________

3)畫出△ABC 繞原點 O 順時針旋轉(zhuǎn) 90°后的對應(yīng)圖形△A3B3C3,并寫出 A3 的坐標(biāo)_____

查看答案和解析>>

同步練習(xí)冊答案