【題目】長江是我們的母親河,金港新區(qū)為了打造沿江風景,吸引游客搞活經(jīng)濟,將一段長為180米的沿江河道整治任務(wù)交由A、B兩工程隊先后接力完成.A工作隊每天整治12米,B工程隊每天整治8米,共用時20天.求A、B兩工程隊分別整治河道多少米?
⑴根據(jù)題意,七⑴班甲同學(xué)列出尚不完整的方程組如下。根據(jù)甲同學(xué)所列的方程組,請你分別指出未知數(shù)x、y表示的意義,然后在方框中補全甲同學(xué)所列的方程組;
,x表示________________________,y表示_________________________;
⑵如果乙同學(xué)直接設(shè)A工程隊整治河道的米數(shù)為x,B工程隊整治河道的米數(shù)為y,列出了一個方程組,求A、B兩工程隊分別整治河道多少米.請你幫助他寫出完整的解答過程。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為更好地培養(yǎng)學(xué)生興趣,開展“拓展課程走班選課”活動,隨機抽查了部分學(xué)生,了解他們最喜愛的項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖. 最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表
項目類型 | 頻數(shù) | 頻率 |
書法類 | 18 | a |
圍棋類 | 14 | 0.28 |
喜劇類 | 8 | 0.16 |
國畫類 | b | 0.20 |
根據(jù)以上信息完成下列問題:
(1)頻數(shù)分布表中a= , b=;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計該校最喜愛圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D在邊AC上(點D不與點A,C重合),點E是射線BC上的一個動點(點E不與點B,C重合),連接DE,以DE為邊作等邊△DEF,連接CF.
(1)如圖1,當DE的延長線與AB的延長線相交,且點C,F(xiàn)在直線DE的同側(cè)時,過點D作DG∥AB,DG交BC于點G,求證:CF=EG;
(2)如圖2,當DE的反向延長線與AB的反向延長線相交,且點C,F(xiàn)在直線DE的同側(cè)時,求證:CD=CE+CF;
(3)如圖3,當DE的反向延長線與線段AB相交,且點C,F(xiàn)在直線DE的異側(cè)時,猜想CD、CE、CF之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級三班為配合國家級衛(wèi)生城市創(chuàng)建驗收,自愿組織參加環(huán)衛(wèi)整治活動,學(xué)校用兩張統(tǒng)計圖公布了該班學(xué)生參加本次活動的情況.小明、小華、小麗三個同學(xué)看了這張統(tǒng)計圖后,小明說:“該班共有25名學(xué)生參加了本次活動”小華說:“該班參加美化數(shù)目的學(xué)生占參加本次活動人數(shù)的40%”小麗說:“該班有6名學(xué)生清掃道路.”小明、小華、小麗三人說法正確的有( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡頂B處的同一水平面上有一座紀念碑CD垂直于水平面,小明在斜坡底A處測得該紀念碑頂部D的仰角為45°,然后他沿著坡比i=5:12的斜坡AB攀行了39米到達坡頂,在坡頂B處又測得該紀念碑頂部的仰角為68°.求坡頂B到地面AE的距離和紀念碑CD的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin68°=0.9,cos68°=0.4,tan68°=2.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖①,△ABC、△AED是兩個全等的等腰直角三角形(其頂點B、E重合),∠BAC=∠AED=90°,O為BC的中點,F(xiàn)為AD的中點,連接OF.
(1)問題發(fā)現(xiàn)
①如圖①,線段OF與EC的數(shù)量關(guān)系為;
②將△AED繞點A逆時針旋轉(zhuǎn)45°,如圖②,OF與EC的數(shù)量關(guān)系為;
(2)類比延伸
將圖①中△AED繞點A逆時針旋轉(zhuǎn)到如圖③所示的位置,請判斷線段OF與EC的數(shù)量關(guān)系,并給出證明.
(3)拓展探究
將圖①中△AED繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α,0°≤α≤90°,AD= ,△AED在旋轉(zhuǎn)過程中,存在△ACD為直角三角形,請直接寫出線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A,B,C三點的坐標分別為(0,a)(b,0)、(b,c),其中a,b,c滿足關(guān)系式(3a-2b)2+=0,|c-4|≥0.
⑴求a,b,c的值;
⑵如果在第二象限內(nèi)有一點P(m-1,1),請用含m的代數(shù)式表示△AOP的面積;
⑶在⑵的條件下,m在什么范圍取值時,△AOP的面積不大于△ABC的面積?請求出在符合條件的前提下、△AOP的面積最大時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習函數(shù)的經(jīng)驗,對函數(shù)y= 的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整,并解決相關(guān)問題:
(1)函數(shù)y= 的自變量x的取值范圍是;
(2)表格是y與x的幾組對應(yīng)值.
x | … | ﹣2 | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值為;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應(yīng)值為坐標的點. 根據(jù)描出的點,畫出函數(shù)y= 的大致圖象;
(4)結(jié)合函數(shù)圖象,請寫出函數(shù)y= 的一條性質(zhì): .
(5)如果方程 =a有2個解,那么a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:
13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;
13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;
13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;
∴13+23+33+43+53=(______ )2= ______ .
根據(jù)以上規(guī)律填空:
(1)13+23+33+…+n3=(______ )2=[ ______ ]2.
(2)猜想:113+123+133+143+153= ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com