【題目】甲乙兩人在相同條件下完成了10次射擊訓練,兩人的成績?nèi)鐖D所示。
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 方差/環(huán) | |
甲 | ______ | 7 | 1.2 |
乙 | 7 | ______ | ______ |
(1)完成表格;
(2)根據(jù)訓練成績,你認為選派哪一名隊員參賽更好?為什么?
【答案】(1)7,7.5,5.4;(2)甲,因為甲乙兩人平均成績一樣,甲射擊成績的方差小于乙,所以甲的成績更加穩(wěn)定,所以選擇甲去參賽。
【解析】
(1)利用加權平均數(shù)的計算方法求甲的平均成績;將乙的成績從小到大排列后取第5個和第6個成績的平均數(shù)求得乙的中位數(shù);利用方差的計算公式求乙的方差;(2)利用方差的穩(wěn)定性進行判斷.
解:(1)甲的平均成績?yōu)椋?/span>(環(huán)),
乙成績的中位數(shù)為:,
乙成績的方差為:,
故答案為:7;7.5;5.4;
(2)我選擇甲去參賽.因為甲乙兩人平均成績一樣,甲射擊成績的方差小于乙,所以甲的成績更加穩(wěn)定,所以選擇甲去參賽.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點,AE、AF分別交BD于點G,H,設△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OFDE=OE2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了統(tǒng)計知識后,數(shù)學老師請數(shù)學興趣小組的同學就本班同學的上學方式進行了一次調(diào)查統(tǒng)計.如圖甲乙是數(shù)學興趣小組的同學們通過手機和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,解答一下的問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所應對的圓心角的度數(shù).
(2)請問該班共有多少名學生?
(3)在圖中將表示“乘車”的部分補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BF和CE分別是鈍角△ABC(∠ABC是鈍角)中AC、AB邊上的中線,又BF⊥CE,垂足是G,過點G作GH⊥BC,垂足為H.
(1)求證:GH2=BHCH;
(2)若BC=20,并且點G到BC的距離是6,則AB的長為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“新中梁山隧道”于2017年11月21日開放通行,原中梁山隧道將封閉升級,擴容改造工程預計2018年3月全部完工,屆時將實現(xiàn)雙向8車道通行,隧道通行能力將增加一倍,沿線交通擁堵狀況將有所緩解.圖中線段AB表示該工程的部分隧道.無人勘測機從隧道側的A點出發(fā)時,測得C點正上方的E點的仰角為45°,無人機飛行到E點后,沿著坡度i=1:3的路線EB飛行,飛行到D點正上方的F點時,測得A點的俯角為12°,其中EC=100米,A、B、C、D、E、F在同一平面內(nèi),則隧道AD段的長度約為( )米,(參考數(shù)據(jù):tan12°≈0.2,cosl2°≈0.98)
A. 200 B. 250 C. 300 D. 540
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算或化簡:
(1)sin45°cos60°﹣cos45°sin30°;
(2)5tan30°﹣2(cos60°﹣sin60°);
(3)(tan30°)2005(2sin45°)2004;
(4)(2cos45°﹣tan45°)﹣(tan60°+sin30°)0﹣(2sin45°﹣1)﹣1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】折疊圓心為、半徑為的圓形紙片,使圓周上的某一點與圓心重合.對圓周上的每一點,都這樣折疊紙片,從而都有一條折痕.那么,所有折痕所在直線上點的全體為( )
A. 以為圓心、半徑為的圓周 B. 以為圓心、半徑為的圓周
C. 以為圓心、半徑為的圓內(nèi)部分 D. 以為圓心、半徑為的圓周及圓外部分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com