【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
當(dāng)AP=AD時(shí)(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系式并證明;
(2)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(3)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系為: ;
(4)當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
【答案】(1)S△PBC=S△DBC+S△ABC,證明見解析;(2)S△PBC=S△DBC+S△ABC;(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC.
【解析】
(1)根據(jù)題中的方法進(jìn)行求解即可;(2)由(1)即可得到;(3)方法同(1),進(jìn)行求解;(4)利用(3)中的結(jié)論即可求解.
(1)∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP
=S四邊形ABCD﹣S△ABD﹣S△CDA
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)
=S△DBC+S△ABC.
∴S△PBC=S△DBC+S△ABC
(2)由(1)得,S△PBC=S△DBC+S△ABC;
(3)S△PBC=S△DBC+S△ABC;
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP
=S四邊形ABCD﹣S△ABD﹣S△CDA
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)
=S△DBC+S△ABC.
∴S△PBC=S△DBC+S△ABC
(4)由(3)得,S△PBC=S△DBC+S△ABC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,直線a∥直線b,點(diǎn)A、D在直線a上,點(diǎn)B、C在直線b上,連接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面積_______△BDC的面積(填“>”、“=”或“<”).
(2)如圖2,已知△ABC,過(guò)點(diǎn)A有一條線段,將△ABC的面積平分,且交BC于點(diǎn)D,則 .
(3)如圖3,已知四邊形ABCD,請(qǐng)過(guò)點(diǎn)D作一條線段DG將四邊形ABCD面積平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標(biāo)系中,點(diǎn)O,C,F(xiàn)在y軸上,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M為OC的中點(diǎn),拋物線y=ax2+b經(jīng)過(guò)M,B,E三點(diǎn),則 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長(zhǎng)度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A、N為頂點(diǎn)的三角形與△MAO相似(不包括全等)?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家藍(lán)莓采摘園的草莓品質(zhì)相同,銷售價(jià)格都是每千克30元,“五一”假期,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園購(gòu)買60元的門票,采摘的藍(lán)莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的藍(lán)莓超過(guò)10千克后,超過(guò)部分五折優(yōu)惠,優(yōu)惠期間,設(shè)某游客的藍(lán)莓采摘量為(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元).
(1)當(dāng)采摘量超過(guò)10千克時(shí),求與的關(guān)系式;
(2)若要采摘40千克藍(lán)莓,去哪家比較合算?請(qǐng)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是∠ABC的平分線,ED∥BC,∠4=∠5,則EF也是∠AED的平分線.完成下列推理過(guò)程:
證明:∵BD是∠ABC的平分線(已知)
∴∠1=∠2(角平分線定義)
∵ED∥BC(已知)
∴∠5=∠2( )
∴∠1=∠5(等量代換)
∵∠4=∠5(已知)
∴EF∥ ( )
∴∠3=∠1( )
∴∠3=∠4(等量代換)
∴EF是∠AED的平分線(角平分線定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正△ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個(gè)含30°角的△EDF的30°角的頂點(diǎn)D放在AB邊上,E,F(xiàn)分別在AC,BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過(guò)點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com