【題目】如圖,在△ABC中,AB=,AC=,BC=3,將△ABC沿射線BC平移,使邊AB平移到DE,得到△DEF.
(1)作出平移后的△DEF(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若AC、DE相交于點(diǎn)H,BE=2,求四邊形DHCF的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y= (x>0)經(jīng)過A、B兩點(diǎn),若點(diǎn)A的橫坐標(biāo)為1,∠OAB=90°,且OA=AB,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的拋物線是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列結(jié)論:①b+2a=0;②拋物線與x軸的另一個(gè)交點(diǎn)為(4,0);③a+c>b;④若(﹣1,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中正確的結(jié)論有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、E兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣,0),以0C為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了 名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com