【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
【答案】(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°
②36或.
【解析】試題分析:(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;
(2)分當(dāng) B在PA的中垂線上,且P在右時(shí);B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時(shí);A在PB的中垂線上,且P在左時(shí)四中情況求解;
(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長(zhǎng),然后利用割補(bǔ)法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.
(1)解:(1)連接BC,
∵AB是直徑,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,∴BE=EP,
即CD是PB的中垂線,
∴CP=CB= CA,
(3)① (Ⅰ)如圖2,當(dāng) B在PA的中垂線上,且P在右時(shí),∠ACD=15°;
(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;
(Ⅲ)如圖4,A在PB的中垂線上,且P在右時(shí)∠ACD=60°;
(Ⅳ)如圖5,A在PB的中垂線上,且P在左時(shí)∠ACD=120°
②(Ⅰ)如圖6, ,
.
(Ⅱ)如圖7, ,
,
.
,
.
,
,
,
.
設(shè)BD=9k,PD=2k,
,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面內(nèi),,,.
(1)求證:;
(2)當(dāng)時(shí),取的中點(diǎn)分別為,連接,如圖2,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需再添加兩個(gè)條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,使頂點(diǎn)C恰好落在AB邊的C'處,點(diǎn)D落在點(diǎn)D'處,C'D'交線段AE于點(diǎn)G.
(1)求證:△BC'F∽△AGC';
(2)若C'是AB的中點(diǎn),AB=6,BC=9,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=12,點(diǎn)E是AD上的一點(diǎn),AE=6,BE的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F,連接EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,物理實(shí)驗(yàn)室有一單擺在左右擺動(dòng),擺動(dòng)過程中選取了兩個(gè)瞬時(shí)狀態(tài),從C處測(cè)得E、F兩點(diǎn)的俯角分別為∠ACE=60°,∠BCF=45°,這時(shí)點(diǎn)F相對(duì)于點(diǎn)E升高了4cm.求該擺繩CD的長(zhǎng)度.(精確到0.1cm,參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)P(x,y)的坐標(biāo)滿足x+y=xy,那么稱點(diǎn)P為“和諧點(diǎn)”,若某個(gè)“和諧點(diǎn)“P到x軸的距離為2,則P點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春夏來(lái)臨之際,天氣開始暖和,某商家抓住商機(jī),在三月份力推甲、乙兩款兒童襯衣.已知三月份甲款襯衣的銷售總額為6000元,乙款襯衣的銷售總額為8100元,乙款襯衣的單價(jià)是甲款襯衣單價(jià)的1.5倍,乙款襯衣的銷售數(shù)量比甲款襯衣的銷售數(shù)量少5件.
(1)求三月份甲款襯衣的單價(jià)是多少元?
(2)四月份,該商家準(zhǔn)備銷售甲、乙兩款襯衣共200件,為了加大推銷力度,將甲款襯衣的單價(jià)在三月份的基礎(chǔ)上下調(diào)了20%,乙款襯衣的單價(jià)在三月份的基礎(chǔ)上打五折銷售.要使四月份的總銷售額不低于18720元,則該商家至少要賣出甲款襯衣多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com