【題目】在平面直角坐標(biāo)系中,△ABO的三個頂點坐標(biāo)分別為:A(2,3)、B(3,1)、O(0,0).
(1)將△ABO向左平移4個單位,畫出平移后的△A1B1O1.
(2)將△ABO繞點O順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2O.此時四邊形ABA2B2的形狀是 .
(3)在平面上是否存在點D,使得以A、B、O、D為頂點的四邊形是平行四邊形,若存在請直接寫出符合條件的所有點的坐標(biāo);若不存在,請說明理由.
【答案】(1)圖形見解析(2)平行四邊形(3)(﹣1,2);(1,﹣2);(5,4)
【解析】
(1)利用點平移的坐標(biāo)規(guī)律寫出點A、B、O平移后的對應(yīng)點A1、B1、C1,然后描點即可得到△A1B1O1.
(2)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出A2、B2的坐標(biāo),即可得到△A2B2O;利用對角線互相平分的四邊形為平行四邊形可判斷四邊形ABA2B2的形狀;
(3)分類討論:分別以AB、BO、AO為對角線畫平行四邊形可得到滿足條件的點D,然后寫出對應(yīng)的D點坐標(biāo).
(1)如圖,△A1B1O1為所作;
(2)如圖,△A2B2O為所作,此時四邊形ABA2B2的形狀是平行四邊形.故答案為平行四邊形;
(3)存在.如圖滿足條件的點D的坐標(biāo)為(5,4)或(1,2)或(1,2)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬為5m的貨船,船艙頂部為長方形,并高出水面3.4m,則此貨船是否能順利通過此圓弧形拱橋,并說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)學(xué)家歐拉非常推崇觀察能力,他說過,今天已知的許多數(shù)的性質(zhì),大部分是通過觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家化歸就是將面臨的新問題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問題的數(shù)學(xué)方法,這是一種具有普遍適用性的數(shù)學(xué)思想方法如多項式除以多項式可以類比于多位數(shù)的除法進(jìn)行計算:
請用以上方法解決下列問題:
(1)計算:;
(2)若關(guān)于x的多項式能被二項式整除,且a,b均為自然數(shù),求滿足以上條件的a,b的值及相應(yīng)的商.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,P是邊BC的中點,PD⊥AB,PE⊥AC,垂足分別為D、E
(1)求證:PD=PE;
(2)DE與BC平行嗎?請說明理由;
(3)請?zhí)砑右粋條件,使四邊形ADPE為正方形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E是CD的中點,AF平分∠BAE交BC于點F,將△ADE繞點A順時針旋轉(zhuǎn)90°得△ABG,則CF的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)“低碳環(huán)保,綠色出行”的公益活動,小燕和媽媽決定周日騎自行車去圖書館借書.她們同時從家出發(fā),小燕先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分鐘的速度到達(dá)圖書館,而媽媽始終以120米/分鐘的速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖像,解答下列問題:
(1)圖書館到小燕家的距離是 米;
(2)a= ,b= ,m= ;
(3)媽媽行駛的路程y(米)關(guān)于時間x(分鐘)的函數(shù)解析式是 ;定義域是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一、閱讀材料:
已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t-1)=80,整理得t2-1=80,t2=81,所以t=土9,因為2m2+n2>0,所以2m2+n2=9.
二、方法歸納:
上面這種方法稱為“ 法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
三、探索實踐:
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com