【題目】如圖,DB∥AC,且DB= AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
【答案】
(1)證明:∵E是AC中點,
∴EC= AC.
∵DB= AC,
∴DB=EC.
又∵DB∥EC,
∴四邊形DBCE是平行四邊形.
∴BC=DE
(2)添加AB=BC.
理由:∵DB AE,
∴四邊形DBEA是平行四邊形.
∵BC=DE,AB=BC,
∴AB=DE.
∴ADBE是矩形
【解析】(1)要證明BC=DE,只要證四邊形BCED是平行四邊形.通過給出的已知條件便可.(2)矩形的判定方法有多種,可選擇利用“對角線相等的平行四邊形為矩形”來解決.
【考點精析】本題主要考查了平行四邊形的判定與性質(zhì)和矩形的判定方法的相關(guān)知識點,需要掌握若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點D,過點D作DE∥BC,交AC于點E,現(xiàn)將△ADE繞點A旋轉(zhuǎn)一定角度到如圖2所示的位置(點D在△ABC的內(nèi)部),使得∠ABD+∠ACD=90°.
(1)①求證:△ABD∽△ACE;
②若CD=1,BD= ,求AD的長.
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件不變,設(shè) = =k,若CD=1,BD=2,AD=3,求k的值.
(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若 = = ,設(shè)CD=m,BD=n,AD=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育老師測量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計圖表.
身高分組 | 頻數(shù) | 頻率 |
152≤x<155 | 3 | 0.06 |
155≤x<158 | 7 | 0.14 |
158≤x<161 | m | 0.28 |
161≤x<164 | 13 | n |
164≤x<167 | 9 | 0.18 |
167≤x<170 | 3 | 0.06 |
170≤x<173 | 1 | 0.02 |
根據(jù)以上統(tǒng)計圖表完成下列問題:
(1)統(tǒng)計表中m= , n= , 并將頻數(shù)分布直方圖補充完整;
(2)在這次測量中兩班男生身高的中位數(shù)在:范圍內(nèi);
(3)在身高≥167cm的4人中,甲、乙兩班各有2人,現(xiàn)從4人中隨機推選2人補充到學校國旗護衛(wèi)隊中,請用列表或畫樹狀圖的方法求出這兩人都來自相同班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠1),其中結(jié)論正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正確的是( )
A.①③
B.②③
C.①④
D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2 ,0),點D是對角線AC上一動點(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標為;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證: = ;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學生?
(2)請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=kx+b與坐標軸分別交于點A(0,8)、B(8,0),動點 C從原點O出發(fā)沿OA方向以每秒1個單位長度向點A運動,動點D從點B出發(fā)沿BO方向以每秒1個單位長度向點O運動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動,設(shè)運動時間為t 秒.
(1)直接寫出直線的解析式:;
(2)若E點的坐標為(﹣2,0),當△OCE的面積為5 時.
①求t的值;
②探索:在y軸上是否存在點P,使△PCD的面積等于△CED的面積?若存在,請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com