【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
A. ①② B. ②③ C. ①③ D. ①④
【答案】D
【解析】試題解析:∵AE=AB,
∴BE=2AE,
由翻折的性質(zhì)得,PE=BE,
∴∠APE=30°,
∴∠AEP=90°﹣30°=60°,
∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,
∴∠EFB=90°﹣60°=30°,
∴EF=2BE,故①正確;
∵BE=PE,
∴EF=2PE,
∵EF>PF,
∴PF<2PE,故②錯誤;
由翻折可知EF⊥PB,
∴∠EBQ=∠EFB=30°,
∴BE=2EQ,EF=2BE,
∴FQ=3EQ,故③錯誤;
由翻折的性質(zhì),∠EFB=∠EFP=30°,
∴∠BFP=30°+30°=60°,
∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,
∴∠PBF=∠PFB=60°,
∴△PBF是等邊三角形,故④正確;
綜上所述,結(jié)論正確的是①④.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了培養(yǎng)學(xué)生的興趣,我市某小學(xué)決定再開設(shè)A.舞蹈,B.音樂,C.繪畫,D.書法四個興趣班,為了解學(xué)生對這四個項目的興趣愛好,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖1,2所示的統(tǒng)計圖,且結(jié)合圖中信息解答下列問題:
(1)在這次調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請將兩幅統(tǒng)計圖補充完整;
(3)若本校一共有2000名學(xué)生,請估計喜歡“音樂”的人數(shù);
(4)若調(diào)查到喜歡“書法”的4名學(xué)生中有2名男生,2名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到相同性別的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別是邊BC、AC的中點,過點A作AF∥BC交DE的延長線于F點,連接AD、CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時,氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點A為圓心,以AD的長為半徑畫弧交邊BC于點E,連接AE;
②作∠DAE的平分線交CD于點F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題.
對于形如這樣的二次三項式,可以用公式法將它分解成 的形式.但對于二次三項式,就不能直接運用公式了.此時,我們可以在二次三項式中先加上一項 ,使它與的和成為一個完全平方式,再減去,整個式子的值不變,于是有:
像這樣,先添﹣適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:.
(2)若 a b 5 , ab 6 ,求:①;② 的值.
(3)已知 x 是實數(shù),試比較與的大小,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,,點E在邊BC上,,將沿DE對折至,延長EF交邊AB于點C,連接DG,BF,給出以下結(jié)論:≌;;;∽,其中所有正確結(jié)論的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=10,AC=16,點M是對角線AC上的一個動點,過點M作PQ⊥AC交AB于點P,交AD于點Q,將△APQ沿PQ折疊,點A落在點E處,當(dāng)△BCE是等腰三角形時,AP的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com