【題目】如圖,將矩形ABCD沿EF折疊,點(diǎn)C落在A處,點(diǎn)D落在D′處.若AB=3,BC=9,則折痕EF的長為(
A.
B.4
C.5
D.2

【答案】A
【解析】解:∵矩形ABCD沿EF折疊,點(diǎn)C落在A處, ∴AE=EC,∠AEF=∠CEF,
設(shè)AE=x,則BE=BC﹣EC=9﹣x,
在Rt△ABE中,根據(jù)勾股定理得,AB2+BE2=AE2 ,
即32+(9﹣x)2=x2 ,
解得x=5,
所以,AE=5,BE=9﹣5=4,
∵矩形對(duì)邊AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AF=AE=5,
過點(diǎn)E作EG⊥AD于G,則四邊形ABEG是矩形,
∴AG=BE=4,
GF=AF﹣AG=5﹣4=1,
在Rt△EFG中,根據(jù)勾股定理得,EF= = =
故選A.

根據(jù)翻折的性質(zhì)可得AE=EC,∠AEF=∠CEF,設(shè)AE=x,表示出BE,在Rt△ABE中,利用勾股定理列方程求出x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AFE=∠CEF,從而得到∠AEF=∠AFE,根據(jù)等角對(duì)等邊可得AF=AE,過點(diǎn)E作EG⊥AD于G,求出AG、GF,再利用勾股定理列式計(jì)算即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,如果△ABC和△ADE均為等邊三角形(等邊三角形的三條邊都相等,三個(gè)角都是60°),點(diǎn)B、E、D三點(diǎn)在同一直線上,連接CD.則CDBE的數(shù)量關(guān)系為______;BDC的度數(shù)為______度.

(2)探究:如圖2,若△ABC為三邊互不相等的三角形,以它的邊AB、AC為邊分別向外作等邊△ABD與等邊△ACE,連接BECD相交于點(diǎn)O,ABCD于點(diǎn)F,ACBEG,則CDBE還相等嗎?若相等,請(qǐng)證明,若不相等,說明理由:并請(qǐng)求出∠BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x、y軸上,連接AC,將紙片OABC沿AC折疊,使點(diǎn)B落在點(diǎn)D的位置.若點(diǎn)B的坐標(biāo)為(2,4),則點(diǎn)D的橫坐標(biāo)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩個(gè)全等直角三角形的直角頂點(diǎn)及一條直角邊重合,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)到△A′CB′的位置,其中A′C交直線AD于點(diǎn)E,A′B′分別交直線AD,AC于點(diǎn)F,G.則旋轉(zhuǎn)后的圖中,全等三角形共有( 。

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的內(nèi)角∠ABC和外角∠ACD的平分線相交于點(diǎn)E,BEAC于點(diǎn)F,過點(diǎn)EEGBDAB于點(diǎn)G,交AC于點(diǎn)H,連接AE,有以下結(jié)論:

①∠BEC=BAC;②△HEF≌△CBF;BG=CH+GH;④∠AEB+ACE=90°,其中正確的結(jié)論有_____(將所有正確答案的序號(hào)填寫在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在學(xué)習(xí)了《銳角三角函數(shù)》以后,開展測(cè)量物體高度的實(shí)踐活動(dòng),測(cè)量一建筑物CD的高度,他們站在B處仰望樓頂C,測(cè)得仰角為30°,再往建筑物方向走20m,到達(dá)點(diǎn)F處測(cè)得樓頂C的仰角為45°(BFD在同一直線上).已知觀測(cè)員的眼睛與地面距離為1.5m(即AB=1.5m),求這棟建筑物CD的高度.(參考數(shù)據(jù): ≈1.732, ≈1.414.結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質(zhì)來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,PCD=β,當(dāng)點(diǎn)PB、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APCα、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

(3)(2)的條件下,如果點(diǎn)PB、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫出∠APCα、β之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠ACB=30°,其直角邊分別與坐標(biāo)軸垂直,已知頂點(diǎn)的坐標(biāo)為A(,0),C(0,1).

(1)如果A關(guān)于BC對(duì)稱的點(diǎn)是D,則點(diǎn)D的坐標(biāo)為   

(2)過點(diǎn)B作直線m∥AC,交CD連線于E,求△BCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB= ,BC= ,點(diǎn)E在對(duì)角線BD上,且BE=1.8,連接AE并延長交DC于F,則 等于(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案