【題目】如圖,直線yx+bx軸交于點(diǎn)A,與y軸于點(diǎn)B,點(diǎn)C(20)在線段OA上,且OCOA

1)求b的值;

2)點(diǎn)P是直線yx+b上一動(dòng)點(diǎn),連接PC,PO,求PC+PO的最小值.

【答案】16;(22

【解析】

1)根據(jù)題意求得OA,得出A的坐標(biāo),把A(﹣60)代入yx+b,即可求得b的值;

2)過(guò)O作直線AB的對(duì)稱點(diǎn)O′,連接O′CAB于點(diǎn)P,此時(shí)PC+PO的值最小,最小值為O′C的長(zhǎng),求得O′的坐標(biāo),然后根據(jù)勾股定理即可求得.

解:(1)∵點(diǎn)C(﹣2,0)在線段OA上,且OCOA,

OA3OC3×26,

A(﹣6,0),

∵直線yx+bx軸交于點(diǎn)A,

∴﹣6+b0,

b6

2)過(guò)O作直線AB的對(duì)稱點(diǎn)O′,連接O′CAB于點(diǎn)P,此時(shí)PC+PO的值最小,最小值為O′C的長(zhǎng),

∵直線為yx+6,

B0,6),

OAOB6,

∴△AOB是等腰直角三角形,

∴∠BAO45°,

OO′AB互相垂直平分,

∴四邊形AOBO′是正方形,

O′(﹣6,6),

PC+PO的最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為A(23)、B (1,1)、C(2,1)

(1)畫出關(guān)于軸對(duì)稱的,并寫出點(diǎn)的坐標(biāo)為_________

(2)向左平移4個(gè)單位長(zhǎng)度得到,直接寫出點(diǎn)的坐標(biāo)為_________

(3)直接寫出點(diǎn)B關(guān)于直線n(直線n上各點(diǎn)的縱坐標(biāo)都為-1)對(duì)稱點(diǎn)B'的坐標(biāo)為________

(4)軸上找一點(diǎn)P,使PA+PB的值最小,標(biāo)出P點(diǎn)的位置(保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分線交AB邊于點(diǎn)P,再以點(diǎn)P為圓心,PA長(zhǎng)為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)請(qǐng)你判斷(1)中BC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(34),(3,1)若直線y=﹣2x+b與線段AB有公共點(diǎn),則b的值可以為_____(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD是對(duì)角線,AC=AD,BC>AB,ABCD,AB=4,BD=2,tanBAC=3,則線段BC的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聳立在臨清市城北大運(yùn)河?xùn)|岸的舍利寶塔,是“運(yùn)河四大名塔”之一(如圖1).數(shù)學(xué)興趣小組的小亮同學(xué)在塔上觀景點(diǎn)P處,利用測(cè)角儀測(cè)得運(yùn)河兩岸上的A,B兩點(diǎn)的俯角分別為17.9°,22°,并測(cè)得塔底點(diǎn)C到點(diǎn)B的距離為142米(A、B、C在同一直線上,如圖2),求運(yùn)河兩岸上的A、B兩點(diǎn)的距離(精確到1米).(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c過(guò)點(diǎn)A(1,0),C(0,﹣3)

(1)求此二次函數(shù)的解析式;

(2)在拋物線上存在一點(diǎn)P使ABP的面積為10,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)、.過(guò)點(diǎn)軸交拋物線于點(diǎn),過(guò)點(diǎn)軸,垂足為點(diǎn).點(diǎn)是四邊形的對(duì)角線的交點(diǎn),點(diǎn)軸負(fù)半軸上,且

(1)求拋物線的解析式,并直接寫出四邊形的形狀;

(2)當(dāng)點(diǎn)、兩點(diǎn)同時(shí)出發(fā),均以每秒個(gè)長(zhǎng)度單位的速度沿方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)到時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,在運(yùn)動(dòng)過(guò)程中,以、、四點(diǎn)為頂點(diǎn)的四邊形的面積為,求出之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)在拋物線上是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是梯形?若存在,直接寫出點(diǎn)的坐標(biāo);不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案