【題目】探索與應用.先填寫下表,通過觀察后再回答問題:
a | … | 0.0001 | 0.01 | 1 | 100 | 10000 | … |
… | 0.01 | x | 1 | y | 100 | … |
(1)表格中x= ;y= ;
(2)從表格中探究a與數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知≈3.16,則≈ ;②已知=1.8,若=180,則a= ;
(3)拓展:已知,若,則b= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學家和數(shù)學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A.5
B.4
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校植物園沿路護欄的紋飾部分準備設計成若干個形狀、大小完全相同的四邊形圖案,每平移一個圖案,紋飾長度就增加cm(如圖)所示,已知每個四邊形圖案的水平方向的對角線長30cm.
(1)若=26cm,且該紋飾要用231個四邊形圖案,求紋飾的長度;
(2)當=20cm時,若保持(1)中紋飾長度不變,則需要多少個這樣的四邊形圖案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
我們經常通過認識一個事物的局部或其特殊類型,來逐步認識這個事物;比如我們通過學習特殊的四邊形,即平行四邊形(繼續(xù)學習它們的特殊類型如矩形、菱形等)來逐步認識四邊形;
我們對課本里特殊四邊形的學習,一般先學習圖形的定義,再探索發(fā)現(xiàn)其性質和判定方法,然后通過解決簡單的問題鞏固所學知識;
請解決以下問題:
如圖,我們把滿足AB=AD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫出箏形的兩個性質(定義除外);
(2)寫出箏形的兩個判定方法(定義除外),并選出一個進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】看圖填空,并在括號內說明理由:
∵BD平分∠ABC(已知)
∴__________=__________(__________)
又∠1=∠D(已知)
∴__________=__________(__________)
∴__________∥__________(__________)
∴∠ABC+__________=180°(__________)
又∠ABC=55°(已知)
∴∠BCD=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中, A、B兩點分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點A、B的坐標;(2)、已知點C(-2,2),求△BOC的面積;(3)、點P是第一象限角平分線上一點,若,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足.下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正確的是( )
A.①②③ B.①③④ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,點E在AB邊上,EF⊥AC于點F,連接EC,AF=3,△EFC的周長為12,則EC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點D為AB的中點.
(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以1.5cm/s的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經過_____秒后,點P與點Q第一次在△ABC的AC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com