【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D、E分別在AC、BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,若AC=12,AB=13,則CD的長(zhǎng)為_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從點(diǎn)出發(fā),按的方向在和上移動(dòng).記,點(diǎn)到直線的距離為,則關(guān)于的函數(shù)大致圖象是
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長(zhǎng)分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國(guó)市制長(zhǎng)度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( 。
A. 一個(gè)游戲的中獎(jiǎng)概率是10%,則做10次這樣的游戲一定會(huì)中獎(jiǎng)
B. 為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式
C. 若甲組數(shù)據(jù)的方差S甲2=0.01,乙組數(shù)據(jù)的方差S乙2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
D. 一組數(shù)據(jù)8,3,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D在BA的延長(zhǎng)線上,點(diǎn)E在BC上,DE=DC,點(diǎn)F是DE與AC的交點(diǎn).
(1)求證:∠BDE=∠ACD
(2)若DE=2DF,過(guò)點(diǎn)E作EG∥AC交AB于點(diǎn)G,求證:AB=2AG;
(3)將“點(diǎn)D在BA的延長(zhǎng)線上,點(diǎn)E在BC上” 改為“點(diǎn)D在AB上,點(diǎn)E在CB的延長(zhǎng)線上”,“點(diǎn)F是DE與AC的交點(diǎn)改為 “點(diǎn)F是ED的延長(zhǎng)線與AC的交點(diǎn)”,其它條件不變,如圖.
① 求證:;
② 若DE=4DF,請(qǐng)直接寫出S△ABC∶S△DEC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是正方形ABCD兩條對(duì)角線的交點(diǎn),分別延長(zhǎng)CO到點(diǎn)G,OC到點(diǎn)E,使OG=2OD、OE=2OC,然后以OG、OE為鄰邊作正方形OEFG.
(1)如圖1,若正方形OEFG的對(duì)角線交點(diǎn)為M,求證:四邊形CDME是平行四邊形.
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;
(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點(diǎn)N,如圖3,設(shè)旋轉(zhuǎn)角為α(0°<α<180°),若△AON是等腰三角形,請(qǐng)直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,點(diǎn)E是邊上的動(dòng)點(diǎn),將矩形沿折疊,點(diǎn)A落在點(diǎn)處,連接.
(1)如圖,求證:;
(2)如圖,若點(diǎn)恰好落在上,求的值;
(3)點(diǎn)E在邊上運(yùn)動(dòng)的過(guò)程中,的度數(shù)是否存在最大值,若存在,求出此時(shí)線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是射線BC上的動(dòng)點(diǎn),將AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)得到AE,連接DE.
(1).如圖,猜想是_______三角形;(直接寫出結(jié)果)
(2).如圖,猜想線段CA、CE、CD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3).①當(dāng)BD=___________時(shí),;(直接寫出結(jié)果)
②點(diǎn)D在運(yùn)動(dòng)過(guò)程中,的周長(zhǎng)是否存在最小值?若存在.請(qǐng)直接寫出周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com