【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別是BE,CD的中點,

(1)求證:△AMN是等邊三角形.
(2)當把△ADE繞A點旋轉(zhuǎn)到圖2的位置時,CD=BE是否仍然成立?若成立請證明,若不成立請說明理由.

【答案】
(1)證明:∵△ABC和△ADE是等邊三角形,
∴AB=AC,AE=AD, ∠BAC=∠EAD=60°,
∴AB-AE=AC-AD,即BE=CD,
∴M,N分別是BE,CD的中點,
∴EM= BE,DN= CD, ∴EN=DN,
∴EM+AE=DN+AD,即AN=AM,
∵∠BAC=60°,
∴△AMN是等邊三角形
(2)解:CD=BE.理由如下:
∵△ABC和△ADE為等邊三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=60°.
∵∠BAE=∠BAC∠EAC=60°∠EAC,∠DAC=∠DAE∠EAC=60°∠EAC,∠BAE=∠DAC,∴△ABE≌△ACD,∴CD=BE.
【解析】(1) 要證△AMN是等邊三角形,根據(jù)已知條件可知只需證明AN=AM,根據(jù)△ABC和△ADE是等邊三角形,得出BE=CD,再根據(jù)中點定義得出EN=DN, 就可證得AN=AM,根據(jù)一個角等于60°的等腰三角形是等邊三角形,即可得證。
(2)CD=BE仍然成立,根據(jù)已知條件證明△ABE≌△ACD即可。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是線段AB上一點,C、D兩點分別從P、B出發(fā)以1cm/s、2 cm/s的速度沿直線AB向左運動(C在線段AP上,D在線段BP上)

(1)C、D運動到任一時刻時,總有PD=2AC,請說明P點在線段AB上的位置:

(2)(1)的條件下,Q是直線AB上一點,且AQ-BQ=PQ,求的值。

(3)(1)的條件下,若C、D運動5秒后,恰好有,此時C點停止運動,D點繼續(xù)運動(D點在線段PB上),M、N分別是CD、PD的中點,下列結(jié)論:①PM-PN的值不變;②的值不變,可以說明,只有一個結(jié)論是正確的,請你找出正確的結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.

(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角梯形,,,過點,垂足為點,,,點邊上的一動點,過作線段的垂直平分線,交于點,并交射線于點

1)如圖1,當點與點重合時,求的長;

2)設,,求的函數(shù)關(guān)系式,并寫出定義域;

3)如圖2,聯(lián)結(jié),當是等腰三角形時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB120°,點C為平面內(nèi)一點,作射線OC,射線OD平分∠BOC,射線OE平分∠AOD

1)若點C為∠AOB內(nèi)部一點且∠AOC30°,依題意補全圖形,并求出∠EOC的度數(shù);

2)若點C為∠AOB內(nèi)部一點,∠AOCα0α120°)直接用含α的代數(shù)式表示∠EOC的度數(shù);

3)若∠EOC10°,請你直接寫出所有符合條件的∠AOC度數(shù)(0<∠AOC180°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一口水井,水面比井口低3 m,一只蝸牛從水面沿井壁往井口爬,第一次往上爬0.5 m后又往下滑了0.1 m;第二次往上爬了0.47 m后又往下滑了0.15 m;第三次往上爬了0.6 m后又往下滑了0.15 m,第四次往上爬了0.8 m后又往下滑了0.1 m;第五次往上爬了0.55 m沒有下滑.

問:它能爬出井口嗎?如果不能,那么第六次它至少要爬多少米才能爬出井口?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.

(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系xOy中,A(4,0),C(0,6),點B在第一象限內(nèi),點P從原點O出發(fā),以每秒2個單位長度的速度沿著長方形OABC移動一周(即:沿著O→A→B→C→O的路線移動)

(1)寫出B點的坐標();
(2)當點P移動了4秒時,在圖中平面直角坐標系中描出此時P點的位置,并求出點P的坐標;
(3)在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間t.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作發(fā)現(xiàn):

如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.

(1)填空:①∠EAF的度數(shù)是 °;② EDFE的數(shù)量關(guān)系是 .

類比探究:

(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.

①求∠EAF的度數(shù).

②請寫出線段AE,ED,DB之間的關(guān)系,并證明所寫結(jié)論的正確性.

查看答案和解析>>

同步練習冊答案