如圖,AB∥CD,直線a交AB、CD分別于點E、F,點M在EF上,p是直線CD上的一個動點,(點P不與F重合)

(1)當點P在射線FC上移動時,如圖(1),∠FMP+∠FPM=∠AEF成立嗎?請說明理由.
(2)當點P在射線FD上移動時,如圖(2),∠FMP+∠FPM與∠AEF有什么關系?說明你的理由.
【答案】分析:(1)由AB∥CD,利用兩直線平行,同旁內角互補,可得∠AEF十∠EFC=180°,又由三角形內角和定理,即可得∠FMP+∠FPM+∠EFC=180°,則可得∠FMP+∠FPM=∠AEF;
(2)由AB∥CD,利用兩直線平行,內錯角相等,即可證得∠AEF=∠EFD,又由三角形內角和定理,即可得∠FMP+∠FPM+∠EFD=180°,則可得∠FMP+∠FPM+∠AEF=180°.
解答:解:(1)成立.…(2分)
理由:∵AB∥CD,
∴∠AEF十∠EFC=180°(兩直線平行,同旁內角互補),
∵∠FMP+∠FPM+∠EFC=180°(三角形內角和定理),
∴∠FMP+∠FPM=∠AEF(等量代換); …(6分)

(2)∠FMP+∠FPM與∠AEF互補(或∠FMP+∠FPM+∠AEF=180°)…(8分)
理由:∵AB∥CD,
∴∠AEF=∠EFD(兩直線平行,內錯角相等),
∵∠FMP+∠FPM+∠EFD=180°(三角形內角和定理),
∴∠FMP+∠FPM+∠AEF=180°(等量代換). …l2
點評:此題考查了平行線的性質與三角形內角和定理.此題難度適中,注意掌握兩直線平行,同旁內角互補與兩直線平行,內錯角相等定理的應用,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設當?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關系式;
(3)當x=4(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在舞臺上有兩根豎直放置的鐵桿,其中鐵桿AB長1m,CD長2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點為坐標原點,建立了如圖所示的平面直角坐標系,演員的位置為點M,設其精英家教網(wǎng)橫坐標為x,縱坐標為y.
(1)寫出線段BD的函數(shù)關系式;
(2)為了保護演員的安全,過D點拉了一根與地面平行的鋼索DE,在上面掛上了一條保險鋼絲MN,MN隨演員的移動而移動,并始終垂直于地面,其長度自動調整,設保險鋼絲的長度為w,求w與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將網(wǎng)格中的三條線段AB、CD、EF沿網(wǎng)格線(水平和鉛直方向)平移,使它們首尾相接構成三角形,至少需要移動
7
7
格.

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習冊答案