【題目】閱讀下列材料:
材料1:在處理分數(shù)和分式問題時,有時由于分子比分母大,或者分子的次數(shù)高于分母的次數(shù),在實際運算時往往難度比較大,這時我們可以將假分數(shù)(分式)拆分成一個整數(shù)(整式)與一個真分數(shù)(式)的和(差)的形式,通過對簡單式的分析來解決問題,我們稱之為分離整數(shù)法.此法在處理分式或整除問題時頗為有效.
例:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:設(shè)x+2=t,則x=t﹣2.
∴原式=
∴
這樣,分式就拆分成一個整式(x﹣5)與一個分式的和的形式.
根據(jù)以上閱讀材料回答下列問題:
(1)將分式拆分成一個整式與一個分子為整數(shù)的分式的和的形式,則結(jié)果為 ;
(2)已知分式的值為整數(shù),求整數(shù)x的值;
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線l1:y=x2+c,當其函數(shù)值y=1時,只有一個自變量x的值與其對應
(1)求c的值;
(2)將拋物線l1經(jīng)過平移得到拋物線l2:y=(x﹣p)2﹣1.
①若拋物線l2與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,記△ABC的外心為P,當﹣1≤p≤時,求點P的縱坐標的取值范圍;
②當0≤x≤2時,對于拋物線l1上任意點E,拋物線l2上總存在點F,使得點E、F縱坐標相等,求p的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,四邊形是知形,,點是線段上一動點(不與重合),點是線段延長線上一動點,連接交于點.設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.
(1)求圖②中與的函數(shù)表達式;
(2)求證:;
(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是以BC為直徑的⊙O上一點,AD⊥BC于點D,過點B作⊙O的切線,與CA的延長線相交于點E,G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P,且FG=FB=3.
(1)求證:BF=EF;
(2)求tanP;
(3)求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=3x﹣5與反比例函數(shù)y2=的圖象相交A(2,m),B(n,﹣6)兩點,連接OA,OB.
(1)求k和n的值;
(2)求△AOB的面積;
(3)直接寫出y1> y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王某月手機話費中的各項費用統(tǒng)計情況見下列圖表,請你根據(jù)圖表信息完成下列各題:
項目 | 月功能費 | 基本話費 | 長途話費 | 短信費 |
金額/元 | 5 | ▲ | ▲ | 25 |
(1)該月小王手機話費共有多少元?
(2)扇形統(tǒng)計圖中,表示短信費的扇形的圓心角為多少度?
(3)請將表格補充完整;
(4)請將條形統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(,,為常數(shù),且)中的與的部分對應值如下表:
以下結(jié)論:
①二次函數(shù)有最小值為;
②當時,隨的增大而增大;
③二次函數(shù)的圖象與軸只有一個交點;
④當時,.
其中正確的結(jié)論有( )個
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,活動課上,小玥想要利用所學的數(shù)學知識測量某個建筑地所在山坡AE的高度,她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1:1的斜坡按速度20米/分步行15分鐘到達C處,此時,測得點A的俯角是15°.圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上,求出建筑地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù):≈1.41).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com