已知△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,若a,b是關于x的一元二次方程x2-(c+4)x+4c+8=0的二根,且9c=25a•sinA.
(1)求證:△ABC是直角三角形.
(2)求△ABC的三邊長.

【答案】分析:(1)根據(jù)根與系數(shù)的關系可知:a+b=c+4,ab=4c+8,因為a2+b2=(c+4)2-2(4c+8)=c2問題得證;
(2)在直角三角形ABC中sinA=,又因為9c=25a•sinA,a=c,由勾股定理得:b=c,把a=c,b=c代入a+b=c+4得,可求出的值,進而求出a和b的值.
解答:(1)證明:
∵a、b是關于x的一元二次方程x2-(c+4)x+4c+8=0的二根
∴a+b=c+4,ab=4c+8,
∴a2+b2=(c+4)2-2(4c+8)=c2
∴△ABC是直角三角形;
(2)在Rt△ABC中sinA=,
∵9c=25a•sinA,
∴25a2=9c2,
∴a=c,
由勾股定理得:b=c,
把a=c,b=c代入a+b=c+4得,
c=c+4,
解得:c=10,
∴a=6.b=8.
點評:本題考查了根與系數(shù)的關系以及勾股定理和逆定理的運用,題目設計比較新穎.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結論的代號填入題中的模線上).
(2)設AC=BC=1,當CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=(  )

查看答案和解析>>

同步練習冊答案