【題目】如圖,點A,B,C,D在⊙O上,點O在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=( )
A.55°
B.60°
C.65°
D.70°
【答案】B
【解析】解:∵四邊形OABC為平行四邊形, ∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.
∵四邊形ABCD是圓的內(nèi)接四邊形,
∴∠D+∠B=180°.
又∠D= ∠AOC,
∴3∠D=180°,
解得∠D=60°.
∴∠OAB=∠OCB=180°﹣∠B=60°.
∴∠OAD+∠OCD=360°﹣(∠D+∠B+∠OAB+∠OCB)=360°﹣(60°+120°+60°+60°)=60°.
故選B.
【考點精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和圓周角定理的相關(guān)知識可以得到問題的答案,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(元/千克) | 15 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價.
(2)為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,能判定△ABC≌△ADC的是( )
A. AC=AC B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,∠B=30°,∠C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使A與A′、B與B′、C與C′、D與D′重合,則∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( 。
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AE與CD交于點M,AE與BC交于點N.
(1)求證:AE=CD;
(2)求證:AE⊥CD;
(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有 (請寫序號,少選、錯選均不得分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點P在邊DC上,且△PAB是直角三角形,請在圖中標(biāo)出符合題意的點P,并直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)已知:關(guān)于的方程.
(1)求證:方程總有兩個實數(shù)根;
(2)如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com