【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結論的序號是 .
【答案】①③④
【解析】解:觀察函數(shù)圖象,發(fā)現(xiàn): 開口向下a<0;與y軸交點在y軸正半軸c>0;對稱軸在y軸右側﹣ >0;頂點在x軸上方 >0.
① a<0,c>0,﹣ >0,
∴b>0,
∴abc<0,①成立;
② >0,
∴ <0,②不成立;
③∵OA=OC,
∴xA=﹣c,
將點A(﹣c,0)代入y=ax2+bx+c中,
得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;
④∵OA=﹣xA , OB=xB , xAxB= ,
∴OAOB=﹣ ,④成立.
綜上可知:①③④成立.
故答案為:①③④.
觀察函數(shù)圖象,根據(jù)二次函數(shù)圖象與系數(shù)的關系找出“a<0,c>0,﹣ >0”,再由頂點的縱坐標在x軸上方得出 >0.①由a<0,c>0,﹣ >0即可得知該結論成立;②由頂點縱坐標大于0即可得出該結論不成立;③由OA=OC,可得出xA=﹣c,將點A(﹣c,0)代入二次函數(shù)解析式即可得出該結論成立;④結合根與系數(shù)的關系即可得出該結論成立.綜上即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,除公共邊外,根據(jù)下列括號內三角形全等的條件,在橫線上添加適當?shù)臈l件,使與全等:
________,________;
________,________;
,________;
________,.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在⊙O上,點O在∠D的內部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=( )
A.55°
B.60°
C.65°
D.70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,直線與軸交于點,直線與軸及直線分別交于點.點關于軸對稱,連接.
(1)求點的坐標及直線的表達式;
(2)設面積的和,求的值;
(3)在求(2)中時,嘉琪有個想法:“將沿軸翻折到的位置,與四邊形拼接后可看成,這樣求便轉化為直接求的面積不更快捷嗎?”但大家經(jīng)反復驗算,發(fā)現(xiàn),請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2002年8月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖).如果大正方形的面積是100,小正方形的面積是4,直角三角形較短的直角邊長為,較長的直角邊長為,那么的值是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù):①y=﹣x;②y=2x;③y=﹣ ;④y=x2(x<0),y隨x的增大而減小的函數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關于x軸對稱的圖形△A1B1C1;
(2)寫出頂點A1,B1,C1的坐標;
(3)若正方形網(wǎng)格每兩個格點間為一個單位長度,求△A1B1C1的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com