【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).

(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),若AM=2,MN=3,則BN=;
(2)如圖2,在△ABC中,F(xiàn)G是中位線,點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE≥BD,連接AD,AE分別交FG于點(diǎn)M,N,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn);

(3)如圖3,已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),MN>AM≥BN,四邊形AMDC,四邊形MNFE和四邊形NBHG均是正方形,點(diǎn)P在邊EF上,試探究SACN , SAPB , SMBH的數(shù)量關(guān)系.
SACN=;SMBH=;SAPB=;
SACN , SAPB , SMBH的數(shù)量關(guān)系是

【答案】
(1)
(2)證明∵點(diǎn)F、M、N、G分別是AB、AD、AE、AC邊上的中點(diǎn),

∴FM、MN、NG分別是△ABD、△ADE、△AEC的中位線,

∴BD=2FM,DE=2MN,EC=2NG,

∵點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE>BD,

∴EC2=DE2+DB2,

∴4NG2=4MN2+4FM2

∴NG2=MN2+FM2

∴點(diǎn)M,N是線段FG的勾股分割點(diǎn)


(3) ?AM2+ MN?AM, ?BN2+ ?MN?BN, MN2+ ?MN?AM+ ?MN?BN,SAPB=SACN+SMBH
【解析】解:(1)分兩種情況:

①當(dāng)MN為最大線段時(shí),

∵點(diǎn) M、N是線段AB的勾股分割點(diǎn),

∴BN= = = ;

②當(dāng)BN為最大線段時(shí),

∵點(diǎn)M、N是線段AB的勾股分割點(diǎn),

∴BN= = =

綜上所述:BN的長(zhǎng)為

⑶∵四邊形AMDC,四邊形MNFE和四邊形NBHG均是正方形,

∴SACN= (AM+MN)AC= (AM+MN)AM= AM2+ MNAM,

SMBH= (MN+BN)BH= (MN+BN)BN= BN2+ MNBN,

SPAB= (AM+NM+BN)FN= (AM+MN+BN)MN= MN2+ MNAM+ MNBN,

∴SAPB=SACN+SMBH,

所以答案是SAPB=SACN+SMBH

【考點(diǎn)精析】關(guān)于本題考查的相似三角形的性質(zhì),需要了解對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(轉(zhuǎn)盤被平均分成16),并規(guī)定:顧客每購(gòu)買100元的商品,就能獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色或綠色區(qū)域,顧客就可以分別獲得玩具熊、童話書、水彩筆.小明和媽媽購(gòu)買了125元的商品,請(qǐng)你回答下列問題:

(1)小明獲得獎(jiǎng)品的概率是多少?

(2)小明獲得玩具熊、童話書、水彩筆的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)如圖1,直接寫出,之間的數(shù)量關(guān)系.

2)如圖2,分別平分,,那么有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

3)若點(diǎn)E的位置如圖3所示,,仍分別平分,,請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題化簡(jiǎn)及計(jì)算
(1)化簡(jiǎn):
(2)關(guān)于x的一元二次方程kx2﹣2x+3=0有兩個(gè)不相等的實(shí)數(shù)根.求:k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)圖如下(未完成),解答下列問題:

1)若A組的頻數(shù)比B組小24,求頻數(shù)分布直方圖中的、的值;

2)扇形統(tǒng)計(jì)圖中,D部分所對(duì)的圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績(jī)?cè)?/span>80分以上為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)異的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:;

解方程:

解不等式組:并在數(shù)軸上表示出它的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OABC的兩條邊OA、OC分別在y軸和x軸上,已知點(diǎn)A0,3)、點(diǎn)C(-40).

1)若把矩形OABC沿直線DE折疊,使點(diǎn)C落在點(diǎn)A處,直線DEOC、AC、AB的交點(diǎn)分別為DFE,求折痕DE的長(zhǎng);

2)若點(diǎn)Px軸上,在平面內(nèi)是否存在點(diǎn)Q,使以PD、E、Q為頂點(diǎn)的四邊形是菱形?若存在,則請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;

3)如圖2,若MAC邊上的一動(dòng)點(diǎn),在OA上取一點(diǎn)N0,1),將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,M的對(duì)應(yīng)點(diǎn)為M1,請(qǐng)直接寫出NM1的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在南通市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購(gòu)買臺(tái)電腦和臺(tái)電子白板需要萬元,購(gòu)買臺(tái)電腦和臺(tái)電子白板需要萬元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元;

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共臺(tái),若總費(fèi)用不超過萬元,則至多購(gòu)買電子白板多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,中,的垂直平分線交,交所在直線于,若,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案