【題目】列方程解應(yīng)用題:在雙十二期間,AB兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8折.

某學(xué)校計(jì)劃購買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同,根據(jù)商場的活動(dòng)方式,若一次性付款4200元購買這種籃球,則在B超市購買的數(shù)量比在A超市購買的數(shù)量多5個(gè).請(qǐng)求出這種籃球的標(biāo)價(jià).

【答案】這種籃球的標(biāo)價(jià)為50元.

【解析】

設(shè)這種籃球的標(biāo)價(jià)為x元,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合在B超市購買的數(shù)量比在A超市購買的數(shù)量多5個(gè),即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

解:設(shè)這種籃球的標(biāo)價(jià)為x元,

依題意,得:5,

解得:x50

經(jīng)檢驗(yàn),x50是原方程的解,且符合題意.

答:這種籃球的標(biāo)價(jià)為50元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、B分別在x軸、y軸上,AB=12,∠OAB=30°,經(jīng)過A、B的直線l以每秒1個(gè)單位的速度向下作勻速平移運(yùn)動(dòng),與此同時(shí),點(diǎn)P從點(diǎn)B出發(fā),在直線l上以每秒1個(gè)單位的速度沿直線l向右下方向作勻速運(yùn)動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.


(1)直接寫出A、B點(diǎn)坐標(biāo)是A點(diǎn) ,B點(diǎn)
(2)用含t的代數(shù)式求出表示點(diǎn)P的坐標(biāo);
(3)過O作OC⊥l于C,過C作CD⊥x軸于D,問:t為何值時(shí),以P為圓心、1為半徑的圓與直線OC相切?并寫出此時(shí)⊙P與直線CD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cyx的部分對(duì)應(yīng)值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開口向下;②其圖象的對(duì)稱軸為x=1;③當(dāng)x<1時(shí),函數(shù)值yx的增大而增大;④方程ax2+bx+c=0有一個(gè)根大于4,其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王剪了兩張直角三角形紙片,進(jìn)行了如下的操作:

操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)AB重合,折痕為DE

1)如果AC=6cmBC=8cm,可求得△ACD的周長為 ;

2)如果∠CAD∠BAD=47,可求得∠B的度數(shù)為 ;

操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請(qǐng)求出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(﹣32),B0,4),C0,2).

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的A1B1C1,平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的A2B2C2;

2)若將A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線Ly=ax2+bx+ca,bc是常數(shù),a≠0)的頂點(diǎn)P在直線l上,則稱該拋物線L與直線l具有“一帶一路關(guān)系”,此時(shí),拋物線L叫做直線l的“帶線”,直線l叫做拋物線L的“路線”.

求“帶線”Ly=x2﹣2mx+m2+m﹣1(m是常數(shù))的“路線”l的解析式;

若某“帶線”Ly=x2+bx+c的頂點(diǎn)在二次函數(shù)y=x2+4x+1的圖象上,它的“路線”l的解析式為y=2x+4.

求此“帶線”L的解析式;

設(shè)“帶線”L與“路線”l的另一個(gè)交點(diǎn)為Q,點(diǎn)RPQ之間的“帶線”L上,當(dāng)點(diǎn)R到“路線”l的距離最大時(shí),求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證: ;

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知長方體的長、寬、高分別是3x42xx,則它的表面積是_____;

2)若3x3x1,則9x4+12x33x27x+2018_____;

3)若25x200080y2000,則的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數(shù);

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案