【題目】在校園手工制作活動(dòng)中,甲、乙兩人接到手工制作紙花任務(wù),已知甲每小時(shí)制作紙花比乙每小時(shí)制作紙花少20朵,甲制作120朵紙花的時(shí)間與乙制作160朵紙花的時(shí)間相同

(1)求甲、乙兩人每小時(shí)各制作紙花多少朵?

(2)本次活動(dòng)學(xué)校需要該種紙花不少于350朵,若由甲、乙兩人共同制作,則至少需要幾小時(shí)完成任務(wù)?

【答案】(1)甲每小時(shí)制作紙花60朵,每小時(shí)制作紙花80朵;(2)至少需要2.5小時(shí)完成任務(wù).

【解析】

1)根據(jù)甲制作120朵紙花的時(shí)間與乙制作160朵紙花的時(shí)間相同列方程求解即可;

2)根據(jù)不少于350列出不等式求解即可.

(1)設(shè)乙每小時(shí)制作紙花朵,根據(jù)題意,得

解得x=80

經(jīng)檢驗(yàn),x=80 是原方程的解.

∴甲每小時(shí)制作紙花60朵,每小時(shí)制作紙花80.

(2)設(shè)需要小時(shí)完成任務(wù),根據(jù)題意,得

解得y≥2.5

∴至少需要2.5小時(shí)完成任務(wù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若以一條線段為對(duì)角線作正方形,則稱該正方形為這條線段的對(duì)角線正方形.例如,圖①中正方形ABCD即為線段BD對(duì)角線正方形.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線CA﹣AB5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線段PB對(duì)角線正方形,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線段PB對(duì)角線正方形的面積為S(cm2).

(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB對(duì)角線正方形”.

(2)當(dāng)線段PB對(duì)角線正方形有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.

(3)當(dāng)點(diǎn)P沿折線CA﹣AB運(yùn)動(dòng)時(shí),求St之間的函數(shù)關(guān)系式.

(4)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)線段PB對(duì)角線正方形至少有一個(gè)頂點(diǎn)落在∠A的平分線上時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =DBC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°

1)直接寫出∠ADE的度數(shù)(用含的式子表示);

2)以AB,AE為邊作平行四邊形ABFE

如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;

如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上,甲、乙兩個(gè)小組進(jìn)行定點(diǎn)投籃對(duì)抗賽,每組10人,每人投10次.下表是甲組成績(jī)統(tǒng)計(jì)表:

投進(jìn)個(gè)數(shù)

10個(gè)

8個(gè)

6個(gè)

4個(gè)

人數(shù)

1個(gè)

5

2

2

(1)請(qǐng)計(jì)算甲組平均每人投進(jìn)個(gè)數(shù);

(2)經(jīng)統(tǒng)計(jì),兩組平均每人投進(jìn)個(gè)數(shù)相同且乙組成的方差為3.2.若從成績(jī)穩(wěn)定性角度看,哪一組表現(xiàn)更好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與直線y=x+3x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,交x軸正半軸于點(diǎn)B.

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線上任意一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x.

①若點(diǎn)P在第二象限,過點(diǎn)PPNx軸于N,交直線AC于點(diǎn)M,求線段PM關(guān)于x的函數(shù)解析式,并求出PM的最大值;

②若點(diǎn)P是拋物線上任意一點(diǎn),連接CP,以CP為邊作正方形CPEF,當(dāng)點(diǎn)E落在拋物線的對(duì)稱軸上時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18℃的條件下生長(zhǎng)最快的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后大棚內(nèi)溫度y(℃)隨時(shí)間x小時(shí)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問題

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?

(2)k的值

(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)Q.

(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案