【題目】已知甲、乙兩個長方形紙片,其邊長如圖所示(m>0),面積分別為S甲和S乙.
(1)①用含m的代數(shù)式表示S甲=_______________,S乙=_______________.
②用“<”、“=”或“>”號填空S甲_______________S乙,
(2)若一個正方形紙片的周長與乙的周長相等,其面積設(shè)為S正,
①該正方形的邊長是____________.(用含m的代數(shù)式表示);
②小方同學(xué)發(fā)現(xiàn),“S正與S乙的差是定值”請判斷小方同學(xué)的發(fā)現(xiàn)是否正確,并通過計算說明你的理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解“課程選修”的情況,對報名參加“藝術(shù)鑒賞”、“科技制作”、“數(shù)學(xué)思維”、“閱讀寫作”這四個選修項目的學(xué)生(每人限報一項)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了名學(xué)生,扇形統(tǒng)計圖中,“藝術(shù)鑒賞”所對應(yīng)的圓心角的度數(shù)是度;
(2)請把這個條形統(tǒng)計圖補(bǔ)充完整;
(3)現(xiàn)該校700名學(xué)生報名參加這四個選修項目,請你估計有多少名學(xué)生參加了“數(shù)學(xué)思維”項目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,點A、B為函數(shù)L圖象上的任意兩點,點A坐標(biāo)為(x1 , y1),點B坐標(biāo)為(x2 , y2),把式子 稱為函數(shù)L從x1到x2的平均變化率;對于函數(shù)K:y=2x2﹣3x+1圖象上有兩點A(x1 , y1)和B(x2 , y2),當(dāng)x1=1,x2﹣x1= 時,函數(shù)K從x1到x2的平均變化率是;當(dāng)x1=1,x2﹣x1= (n為正整數(shù))時,函數(shù)K從x1到x2的平均變化率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點運(yùn)動到點(1,1),第2次接著運(yùn)動到點(2,0),第3次接著運(yùn)動到點(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2017次運(yùn)動后,動點P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結(jié)DE.
(1)當(dāng)∠BAD=60°,求∠CDE的度數(shù);
(2)當(dāng)點D在BC(點B、C除外)邊上運(yùn)動時,試寫出∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖中表示一次函數(shù) y mx n 與正比例函數(shù) y nx(m , n 是常數(shù),且 mn 0) 圖象的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.李萌與和謝娜同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個不完整的統(tǒng)計圖(如圖).
請根據(jù)上面兩個不完整的統(tǒng)計圖回答以下4個問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計圖中的缺項.
(3)在扇形統(tǒng)計圖中,選擇教師傳授的所占圓心角的度數(shù)為 .
(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有多少人選擇小組合作學(xué)習(xí)模式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形有如下性質(zhì):“在等腰三角形中,等邊對等角”.即:如圖1,在△ABC中,若AB=AC,則∠B=∠C.利用此性質(zhì)解決以下問題:
如圖2,在四邊形ABCD中,AD∥BC,點E在邊AD上,且CB=CE,點F是射線ED上的一個動點,∠ECF的平分線CG交BE的延長線于點G.
(1)若∠EBC=68°,∠ECF=40°,求G的度數(shù);
(2)在動點F運(yùn)動的過程中,∠G:∠EFC的值是否發(fā)生變化?若不變,求它的值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com