【題目】將一副三角板中的兩個直角頂點疊放在一起(如圖①),其中,.

1)若,求的度數(shù);

2)試猜想的數(shù)量關(guān)系,請說明理由;

3)若按住三角板不動,繞頂點轉(zhuǎn)動三角板,試探究等于多少度時,,并簡要說明理由.

【答案】(1)30°; (2)答案見解析;(3)答案見解析.

【解析】

1)由∠BCD150°,∠ACB90°,可得出∠DCA的度數(shù),進而得出∠ACE的度數(shù);

2)根據(jù)(1)中的結(jié)論可提出猜想,再由∠BCD=∠ACB+∠ACD,∠ACE=∠DCEACD可得出結(jié)論;

3)根據(jù)平行線的判定定理,畫出圖形即可求解.

解:(1,,

;

2,理由如下:

,

,

;

3)當(dāng)時,

如圖,根據(jù)同旁內(nèi)角互補,兩直線平行,

當(dāng)時,,此時;

如圖,根據(jù)內(nèi)錯角相等,兩直線平行,

當(dāng)時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,D、E分別是AC、AB上的點,BDCE交于點O.給出下列三個條件:

①∠EBO=DCO;②∠BEO=CDO;BE=CD.

(1)上述三個條件中,哪兩個條件   可判定ABC是等腰三角形(用序號寫出所有情形);

(2)選擇第(1)小題中的一種情形,證明ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是 ( )

A. RtABC中,若tanA,則a4b3

B. RtABC中,∠C90°,則tanAtanB1

C. RtABC 中,∠C90°,若a3b4,則tanA

D. tan75°tan(45°30°)tan45°tan30°1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出AE之間的距離.

(參考數(shù)據(jù):sin22°,cos22°tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知、兩地相距50千米,甲于某日下午1時騎自行車從地出發(fā)駛往地,乙也在同日下午騎摩托車按同路從地出發(fā)駛往地,如圖所示,圖中的折線和線段分別表示甲、乙所行駛的路程(千米)與該日下午時間(時)之間的關(guān)系.根據(jù)圖象回答下列問題:

1)甲出發(fā)___________小時后,乙才開始出發(fā);乙的速度為__________千米/時;甲騎自行車在全程的平均速度為__________千米/時;

2)乙出發(fā)多少小時后就追上了甲?寫出解答過程;

3)請你自己再提出一個符合題意的問題情境,并解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)若m為負(fù)整數(shù),求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類有利于對垃圾進行分流處理,能有效提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用,為了了解同學(xué)們對垃圾分類相關(guān)知識的掌握情況,增強同學(xué)們的環(huán)保意識,某校對本校甲、乙兩班各60名學(xué)生進行了垃極分類相關(guān)知識的測試,并分別隨機抽取了15份成績,整理分析過程如下,請補充完整

(收集數(shù)據(jù))

甲班15名學(xué)生測試成績統(tǒng)計如下:(滿分100分)

68,7289,8582,8574,9280,8578,85,69,76,80

乙班15名學(xué)生測試成績統(tǒng)計如下:(滿分100分)

8689,83,76,73,7867,80,8079,80,8482,8083

(整理數(shù)據(jù))

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù)

組別

班級

65.670.5

70.575.5

75.580.5

80.585.5

85.590.5

90.595.5

甲班

2

2

4

5

1

1

乙班

1

1

a

b

2

0

在表中,a   ,b   

(分析數(shù)據(jù))

1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:

班級

平均數(shù)

眾數(shù)

中位數(shù)

方差

甲班

80

x

80

47.6

乙班

80

80

y

26.2

在表中:x   y   

2)若規(guī)定得分在80分及以上(含80分)為合格,請估計乙班60名學(xué)生中垃圾分類相關(guān)知識合格的學(xué)生有   

3)你認(rèn)為哪個班的學(xué)生掌握垃圾分類相關(guān)知識的情況較好,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(1,0)B(3,0)、C(0,3)三點。

(1)求拋物線的解析式。

(2)M是線段BC上的點(不與B,C重合),過MMNy軸交拋物線于N若點M的橫坐標(biāo)為m,請用m的代數(shù)式表示MN的長。

(3)在(2)的條件下,連接NB、NC,是否存在m,使BNC的面積最大?若存在,求m的值;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案