【題目】將一副三角板中的兩個直角頂點疊放在一起(如圖①),其中,,.
(1)若,求的度數(shù);
(2)試猜想與的數(shù)量關(guān)系,請說明理由;
(3)若按住三角板不動,繞頂點轉(zhuǎn)動三角板,試探究等于多少度時,,并簡要說明理由.
【答案】(1)30°; (2)答案見解析;(3)答案見解析.
【解析】
(1)由∠BCD=150°,∠ACB=90°,可得出∠DCA的度數(shù),進而得出∠ACE的度數(shù);
(2)根據(jù)(1)中的結(jié)論可提出猜想,再由∠BCD=∠ACB+∠ACD,∠ACE=∠DCE∠ACD可得出結(jié)論;
(3)根據(jù)平行線的判定定理,畫出圖形即可求解.
解:(1)∵,,
∴,
∴;
(2),理由如下:
∵,
,
∴;
(3)當(dāng)或時,.
如圖②,根據(jù)同旁內(nèi)角互補,兩直線平行,
當(dāng)時,,此時;
如圖③,根據(jù)內(nèi)錯角相等,兩直線平行,
當(dāng)時,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D、E分別是AC、AB上的點,BD與CE交于點O.給出下列三個條件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三個條件中,哪兩個條件 可判定△ABC是等腰三角形(用序號寫出所有情形);
(2)選擇第(1)小題中的一種情形,證明△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 在 Rt△ABC中,若tanA=,則a=4,b=3
B. 在 Rt△ABC中,∠C=90°,則tanA+tanB=1
C. 在 Rt△ABC 中,∠C=90°,若a=3,b=4,則tanA=
D. tan75°=tan(45°+30°)=tan45°+tan30°=1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、兩地相距50千米,甲于某日下午1時騎自行車從地出發(fā)駛往地,乙也在同日下午騎摩托車按同路從地出發(fā)駛往地,如圖所示,圖中的折線和線段分別表示甲、乙所行駛的路程(千米)與該日下午時間(時)之間的關(guān)系.根據(jù)圖象回答下列問題:
(1)甲出發(fā)___________小時后,乙才開始出發(fā);乙的速度為__________千米/時;甲騎自行車在全程的平均速度為__________千米/時;
(2)乙出發(fā)多少小時后就追上了甲?寫出解答過程;
(3)請你自己再提出一個符合題意的問題情境,并解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為負(fù)整數(shù),求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾分類有利于對垃圾進行分流處理,能有效提高垃圾的資源價值和經(jīng)濟價值,力爭物盡其用,為了了解同學(xué)們對垃圾分類相關(guān)知識的掌握情況,增強同學(xué)們的環(huán)保意識,某校對本校甲、乙兩班各60名學(xué)生進行了垃極分類相關(guān)知識的測試,并分別隨機抽取了15份成績,整理分析過程如下,請補充完整
(收集數(shù)據(jù))
甲班15名學(xué)生測試成績統(tǒng)計如下:(滿分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名學(xué)生測試成績統(tǒng)計如下:(滿分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理數(shù)據(jù))
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù)
組別 班級 | 65.6~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
甲班 | 2 | 2 | 4 | 5 | 1 | 1 |
乙班 | 1 | 1 | a | b | 2 | 0 |
在表中,a= ,b= .
(分析數(shù)據(jù))
(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲班 | 80 | x | 80 | 47.6 |
乙班 | 80 | 80 | y | 26.2 |
在表中:x= ,y= .
(2)若規(guī)定得分在80分及以上(含80分)為合格,請估計乙班60名學(xué)生中垃圾分類相關(guān)知識合格的學(xué)生有 人
(3)你認(rèn)為哪個班的學(xué)生掌握垃圾分類相關(guān)知識的情況較好,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(-1,0)、B(3,0)、C(0,3)三點。
(1)求拋物線的解析式。
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N若點M的橫坐標(biāo)為m,請用m的代數(shù)式表示MN的長。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com