【題目】一塊含45°的直角三角板ABC, AB=AC, ∠BAC=90°, 點(diǎn)D為射線(xiàn)CB上一點(diǎn),且不與點(diǎn)C,點(diǎn)B重合,連接AD.過(guò)點(diǎn)A作線(xiàn)段AD的垂線(xiàn)l,在直線(xiàn)l上,截取AE=AD(點(diǎn)E與點(diǎn)C在直線(xiàn)AD的同側(cè)),連接CE.
(1)當(dāng)點(diǎn)D在線(xiàn)段CB上時(shí),如圖1,線(xiàn)段CE與BD的數(shù)量關(guān)系為____________,位置關(guān)系為___________;
(2)當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上時(shí),如圖2,
①請(qǐng)將圖形補(bǔ)充完整;
②(1)中的結(jié)論是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
【答案】(1)CE=BD, CE⊥BD;(2)①見(jiàn)解析,②成立,理由見(jiàn)解析
【解析】
(1)在圖1中證明△ABD≌△ACE,得到CE=BD,∠B=∠ACE=45°即可得到∠BCE=90°,即CE⊥BD;
(2)①根據(jù)題意,畫(huà)出圖形即可;
②與(1)同理,證明△ADB≌△AEC,然后得到CE=BD,然后得到∠ABC=∠ACB=45°,然后得到∠BCE=90°,即CE⊥BD.
證明:(1)∵AD⊥l,
∴∠DAE=∠BAC=90°,
∴∠BAD+∠DAC=∠DAC+∠CAE=90°,
∴∠BAD=∠CAE,
∵AD=AE,AB=AC,
∴△ABD≌△ACE,
∴CE=BD,∠B=∠ACE=45°,
∴∠ACB+∠ACE=45°+45°=90°,
∴∠BCE=90°,即CE⊥BD;
故答案為:CE=BD,CE⊥BD;
(2)①補(bǔ)全圖形,如圖:
②CE=BD,CE⊥BD仍成立;
證明:∵AD⊥AE
∴∠DAE=90°
∵∠BAC=90°
∴∠DAE∠1=∠BAC∠1
即∠2=∠3
∵AB=AC, AD=AE
∴△ADB≌△AEC
∴CE=BD,∠ACE=∠ABD
∵∠ABC=∠ACB=45°
∴∠ACE=∠ABD=135°
∴∠DCE=∠ACE∠ACB=90°
∴CE⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,、兩點(diǎn)分別在邊、上,,與相交于點(diǎn),若的面積為,則的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在長(zhǎng)度為1個(gè)單位的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出與△ABC關(guān)于直線(xiàn)l成軸對(duì)稱(chēng)的△AB′C′;
(2)△ABC的面積為________;
(3)在直線(xiàn)l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為________個(gè)單位長(zhǎng)度.(在圖形中標(biāo)出點(diǎn)P)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,對(duì)任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因?yàn)?2-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一個(gè)正整數(shù)是另外一個(gè)正整數(shù)b的平方,我們稱(chēng)正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1
(2)如果一個(gè)兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們就稱(chēng)這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程時(shí),配方正確的是( )
A. 方程x2-6x-5=0,可化為(x-3)2=4
B. 方程y2-2y-2 015=0,可化為(y-1)2=2 015
C. 方程a2+8a+9=0,可化為(a+4)2=25
D. 方程2x2-6x-7=0,可化為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以2cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn)P與點(diǎn)Q第一次在△ABC的 邊上相遇?(在橫線(xiàn)上直接寫(xiě)出答案,不必書(shū)寫(xiě)解題過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)40°后所得的圖形,點(diǎn)C恰好在AB上,∠AOD=90°,則∠D的度數(shù)是__________°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com