觀察下列圖形及圖形所對應(yīng)的算式,根據(jù)你發(fā)現(xiàn)的規(guī)律,用n表示1+8+16+24+…+8n(n是正整數(shù))的計算結(jié)果為   
【答案】分析:由題意可以得到,本題是一道規(guī)律題,通過圖形觀察算式計算可以得出:當(dāng)n=1時,1+8×1=9=32=(2×1+1)2,當(dāng)n=2時,1+8×1+8×2=25=52=(2×2+1)2;當(dāng)n=3時,1+8×1+8×2+8×3=49=72=(3×2+1)2;當(dāng)n=4時,1+8×1+8×2+8×3+8×4=81=92=(4×2+1)2;依此類推第n的個式子為1+8+16+24+…+8n=(2n+1)2.故計算出結(jié)果.
解答:解:由題意,得
當(dāng)n=1時,1+8×1=9=32=(2×1+1)2
當(dāng)n=2時,1+8×1+8×2=25=52=(2×2+1)2
當(dāng)n=3時,1+8×1+8×2+8×3=49=72=(2×3+1)2
當(dāng)n=4時,1+8×1+8×2+8×3+8×4=81=92=(2×4+1)2
∴依此類推第n的個式子為1+8+16+24+…+8n=(2n+1)2
故答案為:4n2+4n+1.
點評:本題是一道規(guī)律型的試題,考查了圖形的變化規(guī)律和算式的變化規(guī)律,完全平方公式的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、觀察下列圖形及圖形所對應(yīng)的算式,根據(jù)你發(fā)現(xiàn)的規(guī)律計算1+8+16+24+…+8n(n是正整數(shù))的結(jié)果為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、觀察下列圖形及圖形所對應(yīng)的等式,探究其中的規(guī)律:

(1)在橫線上寫出第3個圖形所對應(yīng)的算式的結(jié)果;
(2)在橫線上寫出第4個圖形所對應(yīng)的等式;
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律計算1+8+16+24+…+8n(n是正整數(shù))的結(jié)果為(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列圖形及圖形所對應(yīng)的算式,根據(jù)你發(fā)現(xiàn)的規(guī)律,用n表示1+8+16+24+…+8n(n是正整數(shù))的計算結(jié)果為
4n2+4n+1
4n2+4n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列圖形及圖形所對應(yīng)的等式,探究其中的規(guī)律:

(1)在橫線上寫出第3個圖形所對應(yīng)的算式的結(jié)果;
(2)在橫線上寫出第4個圖形所對應(yīng)的等式;
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律計算1+8+16+24+…+8n(n是正整數(shù))的結(jié)果為
(2n+1)2
(2n+1)2
(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列圖形及圖形所對應(yīng)的等式,探究其中的規(guī)律:

1+8=32,1+8+16=52,1+8+16+24=
1+8+8×2+8×3=72 1+8+16+24+36=92
1+8+8×2+8×3=72 1+8+16+24+36=92

(1)在橫線上寫出第3、4個圖形所對應(yīng)的算式的結(jié)果;
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律計算1+8+16+24+…+8n(n是正整數(shù))的結(jié)果為
(2n+1)2
(2n+1)2
(用含n的代數(shù)式表示).
(3)計算:88+96+104+…+240.

查看答案和解析>>

同步練習(xí)冊答案