【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問(wèn)題:

(1)數(shù)軸上表示41的兩點(diǎn)之間的距離是   ;表示﹣32兩點(diǎn)之間的距離是   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于|mn|.如果表示數(shù)a和﹣2的兩點(diǎn)之間的距離是3,那么a   ;

(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當(dāng)a取何值時(shí),|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?請(qǐng)說(shuō)明理由.

【答案】135;15;(2639

【解析】

試題(1)根據(jù)數(shù)軸,觀察兩點(diǎn)之間的距離即可解決;

2)根據(jù)|a+4|+|a-2|表示數(shù)a的點(diǎn)到-42兩點(diǎn)的距離的和即可求解.

試題解析:(13;5;15;

2表示數(shù)軸上數(shù)和數(shù)-4,2之間距離的和,又因?yàn)?/span>位于-4,2之間,

等于-4,2之間的距離和,

|2-(-4|6

3表示數(shù)軸上數(shù)和數(shù)-5,1,4之間距離的和,

∴a1時(shí)距離的和最小

|4-(-5|9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是平行四邊形ABCD的對(duì)角線,E、H分別為邊BA和邊BC延長(zhǎng)線上的點(diǎn),連接EHAD、CD于點(diǎn)F、G,且EHAC.

(1)求證:EG=FH;

(2)若△ACD是等腰直角三角形,∠ACD=90°,F(xiàn)AD的中點(diǎn),AD=6,連接BF,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)買60件A商品和30件B商品共用了1080元,購(gòu)買50件A商品和20件B商品共用了880元.

(1)A、B兩種商品的單價(jià)分別是多少元?

(2)已知該商店購(gòu)買B商品的件數(shù)比購(gòu)買A商品的件數(shù)的2倍少4件,如果需要購(gòu)買A、B兩種商品的總件數(shù)不少于32件,且該商店購(gòu)買的A、B兩種商品的總費(fèi)用不超過(guò)296元,那么該商店有哪幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為促銷,決定對(duì)A,B兩種商品進(jìn)行打折出售.打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元;打折后,買50件A商品和40件B商品僅需364元,這比打折前少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且AD=DC,過(guò)A,B,D三點(diǎn)作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC= ,AC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)新增了一個(gè)化工項(xiàng)目,為了節(jié)約資源,保護(hù)環(huán)境,該企業(yè)決定購(gòu)買A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),具體情況如下表:

A型

B型

價(jià)格(萬(wàn)元/臺(tái))

12

10

月污水處理能力(噸/月)

200

160

經(jīng)預(yù)算,企業(yè)最多支出89萬(wàn)元購(gòu)買設(shè)備,且要求月處理污水能力不低于1380噸.
(1)該企業(yè)有幾種購(gòu)買方案?
(2)哪種方案更省錢,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(4,0),B(0,4),C(6,6).

(1)求拋物線的表達(dá)式;
(2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點(diǎn)D,E,F(xiàn),G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1對(duì)應(yīng)的函數(shù)表達(dá)式為y=2x-2,直線l1與x軸交于點(diǎn)D.直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1,l2交于點(diǎn)C(m,2).

(1)求點(diǎn)D,點(diǎn)C的坐標(biāo);

(2)求直線l2對(duì)應(yīng)的函數(shù)表達(dá)式;

(3)求△ADC的面積;

(4)利用函數(shù)圖象寫出關(guān)于x,y的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市推出了電腦上網(wǎng)包月月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式如圖所示,其中OA是線段,AC是射線.

(1)當(dāng)x≥30時(shí),求yx之間的函數(shù)關(guān)系式;

(2)若小李4月份上網(wǎng)時(shí)間為20小時(shí),他應(yīng)付多少元上網(wǎng)費(fèi)用;

(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在5月份的上網(wǎng)時(shí)間是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案