【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓O1、O2、O3 , …組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2017秒時(shí),點(diǎn)P的坐標(biāo)是( )
A.(2016,0)
B.(2017,1)
C.(2017,﹣1)
D.(2018,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形的內(nèi)角和是它的外角和的2倍,則這個(gè)多邊形是( )
A. 四邊形 B. 五邊形 C. 六邊形 D. 七邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,觀察圖形并解答問(wèn)題.
(1)按如表已填寫(xiě)的形式填寫(xiě)表中的空格,答案寫(xiě)在相應(yīng)的序號(hào)后面:
圖① | 圖② | 圖③ | |
三個(gè)角上三個(gè)數(shù)的積 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 | ② |
三個(gè)角上三個(gè)數(shù)的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 | ③ |
積與和的商 | (﹣2)÷2=﹣1 | ④ | ④ |
(2)請(qǐng)用你發(fā)現(xiàn)的規(guī)律求出圖④中的數(shù)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)F是CD 的中點(diǎn),且AF⊥CD,BC=ED,∠BCD=∠EDC.
(1)求證:BF=EF;
(2)求證:AB=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是( 。
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b為有理數(shù),且a>0,b<0,a+b<0,將四個(gè)數(shù)a,b,﹣a,﹣b按由大到小的順序排列是_____.(用“>”號(hào)連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開(kāi)方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有共買(mǎi)羊,人出五,不足四十五;人出七,不足三.問(wèn)人數(shù)、羊價(jià)各幾何?”譯文:“假設(shè)有若干人共同出錢(qián)買(mǎi)羊,如果每人出5錢(qián),那么還差45錢(qián);如果每人出7錢(qián)那么仍舊差3錢(qián),求買(mǎi)羊的人數(shù)和羊的價(jià)錢(qián).”設(shè)共有x個(gè)人買(mǎi)羊,可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅和小明在研究一個(gè)數(shù)學(xué)問(wèn)題:已知AB∥CD,AB和CD都不經(jīng)過(guò)點(diǎn)E,探索∠E與∠A,∠C的數(shù)量關(guān)系.
(1)發(fā)現(xiàn):在圖1中,小紅和小明都發(fā)現(xiàn):∠AEC=∠A+∠C; 小紅是這樣證明的:如圖7過(guò)點(diǎn)E作EQ∥AB.
∴∠AEQ=∠A()
∵EQ∥AB,AB∥CD.
∴EQ∥CD()
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是這樣證明的:如圖7過(guò)點(diǎn)E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
請(qǐng)?jiān)谏厦孀C明過(guò)程的橫線上,填寫(xiě)依據(jù):
兩人的證明過(guò)程中,完全正確的是 .
(2)嘗試: ①在圖2中,若∠A=110°,∠C=130°,則∠E的度數(shù)為;
②在圖3中,若∠A=20°,∠C=50°,則∠E的度數(shù)為 .
(3)探索: 裝置圖4中,探索∠E與∠A,∠C的數(shù)量關(guān)系,并說(shuō)明理由.
(4)猜想: 如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關(guān)系?(直接寫(xiě)出結(jié)論)
(5)如圖6,你可以得到什么結(jié)論?(直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長(zhǎng)線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com