【題目】中,三個內(nèi)角的平分線交于點,過點作,交邊于點.
(1)如圖,若∠ABC=40°,則∠AOC= ,∠ADO= ;
(2)猜想與的關系,并說明你的理由;
【答案】(1) 110°, 110°(2)相等,證明見解析
【解析】
(1)根據(jù)內(nèi)角和的性質(zhì)得出∠BAC+∠BCA=180°-∠ABC=140°,
再利用角平分線的性質(zhì)得到∠OAC+∠OCA=(∠BAC+∠BCA)=70°,再根據(jù)三角形的內(nèi)角和即可求出∠AOC;根據(jù)∠ADO是△BDO的一個外角即可求出其度數(shù);
(2)設∠ABC=a,根據(jù)①的方法求出∠AOC與∠ADO即可判斷
(1)∵∠ABC=40°,∴∠BAC+∠BCA=180°-∠ABC=140°,
∵三個內(nèi)角的平分線交于點,∴∠OAC+∠OCA=(∠BAC+∠BCA)=70°,
∠AOC=180°-(∠OAC+∠OCA)=110°,
∵∠ADO是△BDO的一個外角,
∴∠ADO=∠ABO+90°=∠ABC+90°=110°.
(2)相等,證明如下:
設∠ABC=a,
根據(jù)①的方法求出∠AOC=180°-(∠OAC+∠OCA)
=180°-(∠BAC+∠BCA)
= 180°-(180°-a)
=90°+a
∠ADO =∠ABO+90°
=∠ABC+90°
=a+90°
故=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2 , 交x軸于A2;將C2繞A2旋轉180°得到C3 , 交x軸于A3;…如此進行下去,若點P(2017,m)在第1009段拋物線C1009上,則m的值為( )
A.﹣1
B.0
C.1
D.不確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45°.
(1)試判斷CD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當按定價售出200本時,出現(xiàn)滯銷,便以定價的4折售完剩余的書.
(1)第一次購書的進價是多少元?
(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校準備組織七年級400名學生參加夏令營,已知用3輛小客車和1輛大客車每次可運送學生105人;用1輛小客車和2輛大客車每次可運送學生110人
(1)每輛小客車和每輛大客車各能坐多少名學生?
(2)若學校計劃租用小客車a輛,大客車b輛,一次送完,且恰好每輛車都坐滿,
①請寫出、滿足的關系式__________.
②若小客車每輛租金2000元,大客車每輛租金3800元,請你設計出最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b< 成立的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】永嘉某商店試銷一種新型節(jié)能燈,每盞節(jié)能燈進價為18元,試銷過程中發(fā)現(xiàn),每周銷量y(盞)與銷售單價x(元)之間關系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣進價)
(1)寫出每周的利潤w(元)與銷售單價x(元)之間函數(shù)解析式;
(2)當銷售單價定為多少元時,這種節(jié)能燈每周能夠獲得最大利潤?最大利潤是多少元?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于30元.若商店想要這種節(jié)能燈每周獲得350元的利潤,則銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩座城市相距100千米,現(xiàn)計劃在兩城市間修筑一條高速公路(即線段AB).經(jīng)測量,森林保護區(qū)中心P點既在A城市的北偏東30°的方向上,又在B城市的南偏東45°的方向上.已知森林保護區(qū)的范圍是以P為圓心,35千米為半徑的圓形區(qū)域內(nèi).請問:計劃修筑的這條高速公路會不會穿越森林保護區(qū)?請通過計算說明.(參考數(shù)據(jù): ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)12016 + 3.14 π 0
(2) 3a2 3 2a a5
(3) x 2 x 1 3xx 1
(4)2a b c2a b c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com