【題目】已知,當(dāng)時(shí),

1)求這個(gè)函數(shù)的表達(dá)式;

2)在給出的平面直角坐標(biāo)系中,請(qǐng)用你喜歡的方法畫(huà)出這個(gè)函數(shù)的圖象并寫(xiě)出這個(gè)函數(shù)的一條性質(zhì);

3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫(huà)的函數(shù)圖象,直接寫(xiě)出不等式的解集.

【答案】1;(2)當(dāng)時(shí),的增大而增大;當(dāng)時(shí)的增大而減。唬3

【解析】

1)將x=1,y=5代入可求得k的值;

2)將函數(shù)寫(xiě)成分段函數(shù)的形式,然后分別畫(huà)每一段函數(shù)圖形;

3)讀圖,分段函數(shù)的圖像比反比例函數(shù)圖像高的部分即為解集

解:(1)∵在函數(shù)中,當(dāng)時(shí),

,解得,∴這個(gè)函數(shù)的表達(dá)式是

2)∵,

,∴該函數(shù)的圖象如圖所示:

由圖象可知:當(dāng)時(shí),的增大而增大;當(dāng)時(shí)的增大而減。

3)由函數(shù)圖象可得:

不等式的解集是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)C為直徑BA的延長(zhǎng)線上一點(diǎn),CD切⊙O于點(diǎn)D,

(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

(Ⅱ)如圖②,過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若⊙O的半徑為3,BC=10,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,以為直徑的于點(diǎn),

1)判斷的位置關(guān)系,并說(shuō)明理由;

2)求證:

3)在上取一點(diǎn),若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過(guò)A(﹣1,0)、B5,0)、C0,﹣5)三點(diǎn).

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)當(dāng)0x5時(shí),y的取值范圍為   ;

3)點(diǎn)P為拋物線上一點(diǎn),若SPAB21,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(11),點(diǎn)Bx軸正半軸上,點(diǎn)D在第三象限的雙曲線y上,過(guò)點(diǎn)CCEx軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為( )

A. B. C. 3.5D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(-40)、B(03),一次函數(shù)與坐標(biāo)軸分別交于C、D兩點(diǎn),GCD上一點(diǎn),且DGCG12,連接BG,當(dāng)BG平分∠ABO時(shí),則b的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線AM上有一點(diǎn)BAB6.點(diǎn)C是射線AM上異于B的一點(diǎn),過(guò)CCDAM,且CDAC.過(guò)D點(diǎn)作DEAD,交射線AME. 在射線CD取點(diǎn)F,使得CFCB,連接AF并延長(zhǎng),交DE于點(diǎn)G.設(shè)AC3x

1 當(dāng)CB點(diǎn)右側(cè)時(shí),求ADDF的長(zhǎng).(用關(guān)于x的代數(shù)式表示)

2)當(dāng)x為何值時(shí),△AFD是等腰三角形.

3)若將△DFG沿FG翻折,恰使點(diǎn)D對(duì)應(yīng)點(diǎn)落在射線AM上,連接.此時(shí)x的值為 (直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為軸上點(diǎn),將線段繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到,過(guò)點(diǎn)作直線軸于,過(guò)點(diǎn)直線

1)當(dāng)點(diǎn)的中點(diǎn)時(shí),求直線的函數(shù)表達(dá)式.

2)當(dāng)時(shí),求的面積.

3)在直線上是否存在點(diǎn),使得?若存在,試用的代數(shù)式表示點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案