【題目】已知,當(dāng)時(shí),.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中,請(qǐng)用你喜歡的方法畫(huà)出這個(gè)函數(shù)的圖象并寫(xiě)出這個(gè)函數(shù)的一條性質(zhì);
(3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫(huà)的函數(shù)圖象,直接寫(xiě)出不等式的解集.
【答案】(1);(2)當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí)隨的增大而減。唬3)或.
【解析】
(1)將x=1,y=5代入可求得k的值;
(2)將函數(shù)寫(xiě)成分段函數(shù)的形式,然后分別畫(huà)每一段函數(shù)圖形;
(3)讀圖,分段函數(shù)的圖像比反比例函數(shù)圖像高的部分即為解集
解:(1)∵在函數(shù)中,當(dāng)時(shí),,
∴,解得,∴這個(gè)函數(shù)的表達(dá)式是;
(2)∵,
∴,∴該函數(shù)的圖象如圖所示:
由圖象可知:當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí)隨的增大而減。
(3)由函數(shù)圖象可得:
不等式的解集是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C為直徑BA的延長(zhǎng)線上一點(diǎn),CD切⊙O于點(diǎn)D,
(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);
(Ⅱ)如圖②,過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若⊙O的半徑為3,BC=10,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,以為直徑的交于點(diǎn),.
(1)判斷與的位置關(guān)系,并說(shuō)明理由;
(2)求證:;
(3)在上取一點(diǎn),若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣1,0)、B(5,0)、C(0,﹣5)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<5時(shí),y的取值范圍為 ;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=21,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B在x軸正半軸上,點(diǎn)D在第三象限的雙曲線y=上,過(guò)點(diǎn)C作CE∥x軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為( )
A. B. C. 3.5D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(-4,0)、B(0,3),一次函數(shù)與坐標(biāo)軸分別交于C、D兩點(diǎn),G為CD上一點(diǎn),且DG:CG=1:2,連接BG,當(dāng)BG平分∠ABO時(shí),則b的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線AM上有一點(diǎn)B,AB=6.點(diǎn)C是射線AM上異于B的一點(diǎn),過(guò)C作CD⊥AM,且CD=AC.過(guò)D點(diǎn)作DE⊥AD,交射線AM于E. 在射線CD取點(diǎn)F,使得CF=CB,連接AF并延長(zhǎng),交DE于點(diǎn)G.設(shè)AC=3x.
(1) 當(dāng)C在B點(diǎn)右側(cè)時(shí),求AD、DF的長(zhǎng).(用關(guān)于x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),△AFD是等腰三角形.
(3)若將△DFG沿FG翻折,恰使點(diǎn)D對(duì)應(yīng)點(diǎn)落在射線AM上,連接,.此時(shí)x的值為 (直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為軸上點(diǎn),將線段繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到,過(guò)點(diǎn)作直線軸于,過(guò)點(diǎn)作直線于.
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求直線的函數(shù)表達(dá)式.
(2)當(dāng)時(shí),求的面積.
(3)在直線上是否存在點(diǎn),使得?若存在,試用的代數(shù)式表示點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com