【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,CE在同一水平直線上),已知AB=80mDE=10m,求障礙物B,C兩點間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732

【答案】52.7m

【解析】

如圖,過點DDFAB于點F,過點CCHDF于點H.通過解直角AFD得到DF的長度;通過解直角DCE得到CE的長度,則BC=BE-CE

解:如圖,過點DDFAB于點F,過點CCHDF于點H

DE=BF=CH=10m,

在直角ADF中,∵AF=80m-10m=70m,∠ADF=45°,

DF=AF=70m

在直角CDE中,∵DE=10m,∠DCE=30°,

CE===10m),

BC=BE-CE=70-10≈70-17.32≈52.7m).

答:障礙物BC兩點間的距離約為52.7m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】李師傅駕車從甲地到乙地,途中在加油站加了一次油,加油時,車載電腦顯示油箱中剩余油量4升,已知汽車行駛時,每小時耗油量一定,設(shè)油箱中剩余油量為(升),汽車行駛時間為(時),之間的函數(shù)圖像如圖所示.

1)求李師傅加油前之間的函數(shù)關(guān)系式;

2)求的值;

3)李師傅在加油站的加油量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點A、B重合)的任一點,點C、DO上的兩點,若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長為24+13,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】社區(qū)利用一塊矩形空地建了一個小型的惠民停車場,其布局如圖所示.已知停車場的長為52米,寬為28米,陰影部分設(shè)計為停車位,要鋪花磚,其余部分是等寬的通道.已知鋪花磚的面積為640平方米.

1)求通道的寬是多少米?

2)該停車場共有車位64個,據(jù)調(diào)查分析,當每個車位的月租金為200元時,可全部租出;當每個車位的月租金每上漲10元,就會少租出1個車位.當每個車位的月租金上漲多少元時,停車場的月租金收入為14400元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM是⊙O直徑,弦BCAM,垂足為點N,弦CDAM于點E,連按ABBE

1)如圖1,若CDAB,垂足為點F,求證:∠BED2BAM;

2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE2CN

3)如圖3,ABCD,BECD47AE11,求EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸交于C點,交x軸于點A-20),B6,0),P是該函數(shù)在第一象限內(nèi)圖象上的動點,過點PPQBC于點Q,連接PC,AC

1)求該二次函數(shù)的表達式;

2)求線段PQ的最大值;

3)是否存在點P,使得以點P,C,Q為頂點的三角形與△ACO相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點到直線的距離即為點到直線的垂線段的長.

1)如圖1,取點M1,0),則點M到直線lyx1的距離為多少?

2)如圖2,點P是反比例函數(shù)y在第一象限上的一個點,過點P分別作PMx軸,作PNy軸,記P到直線MN的距離為d0,問是否存在點P,使d0?若存在,求出點P的坐標,若不存在,請說明理由.

3)如圖3,若直線ykx+m與拋物線yx24x相交于x軸上方兩點A、BAB的左邊).且∠AOB90°,求點P2,0)到直線ykx+m的距離最大時,直線ykx+m的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,點EF分別在邊BC,AD上,BEDF,∠AEC90°

1)求證:四邊形AECF是矩形;

2)連接BF,若AB4,∠ABC60°,BF平分∠ABC,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解八年級學生參加社會實踐活動情況,隨機調(diào)查了本校部分八年級學生在第一學期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為 ,圖①中的的值為 ;

(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校八年級學生有人,估計參加社會實踐活動時間大于天的學生人數(shù).

查看答案和解析>>

同步練習冊答案