【題目】(本題滿(mǎn)分8分)
在四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O.若四邊形ABCD是正方形如圖1:則有AC=BD,AC⊥BD.
旋轉(zhuǎn)圖1中的Rt△COD到圖2所示的位置,AC’與BD’有什么關(guān)系?(直接寫(xiě)出)
若四邊形ABCD是菱形,∠ABC=60°,旋轉(zhuǎn)Rt△COD至圖3所示的位置,AC’與BD’又有什么關(guān)系?寫(xiě)出結(jié)論并證明.
【答案】圖2結(jié)論:AC′=BD′,AC′⊥BD′,理由見(jiàn)解析;圖3結(jié)論:BD′=AC′,AC′⊥BD’,理由見(jiàn)解析.
【解析】
試題分析:圖2:根據(jù)四邊形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根據(jù)旋轉(zhuǎn)的性質(zhì)得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代換得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根據(jù)全等三角形的性質(zhì)得到AC′=BD′,∠OAC′=∠OBD′,于是得到結(jié)論;
圖3:根據(jù)四邊形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根據(jù)旋轉(zhuǎn)的性質(zhì)得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根據(jù)相似三角形的性質(zhì)得到BD′=AC′,于是得到結(jié)論.
試題解析:圖2結(jié)論:AC′=BD′,AC′⊥BD′,
理由:∵四邊形ABCD是正方形,
∴AO=OC,BO=OD,AC⊥BD,
∵將Rt△COD旋轉(zhuǎn)得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,
在△AOC′與△BOD′中,
,
∴△AOC′≌△BOD′,
∴AC′=BD′,∠OAC′=∠OBD′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′;
圖3結(jié)論:BD′=AC′,AC′⊥BD’
理由:∵四邊形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵∠ABC=60°,
∴∠ABO=30°,
∴OB=OA,OD=OC,
∵將Rt△COD旋轉(zhuǎn)得到Rt△C′OD′,
∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,
∴OD′=OC′,∠AOC′=∠BOD′,
∴,
∴△AOC′∽△BOD′,
∴,∠OAC′=∠OBD′,
∴BD′=AC′,
∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,
∴∠O′AC′+∠AO′D′=90°,
∴AC′⊥BD′.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 ⑴如圖,在正方形中,點(diǎn)分別在上,于點(diǎn),求證;
⑵如圖,將⑴中的正方形改為矩形,于點(diǎn),探究與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),拋物線(xiàn)經(jīng)過(guò)點(diǎn),.
(1)求點(diǎn)B的坐標(biāo)和拋物線(xiàn)的解析式;
(2)M(m,0)為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線(xiàn)與直線(xiàn)AB和拋物線(xiàn)分別交于點(diǎn)P、N,
①點(diǎn)在線(xiàn)段上運(yùn)動(dòng),若以,,為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);
②點(diǎn)在軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn),,中恰有一點(diǎn)是其它兩點(diǎn)所連線(xiàn)段的中點(diǎn)(三點(diǎn)重合除外),則稱(chēng),,三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫(xiě)出使得,,三點(diǎn)成為“共諧點(diǎn)”的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形的兩個(gè)頂點(diǎn),以對(duì)角線(xiàn)OA1為邊作正方形 OAA1B 再以正方形OA1A2B1的對(duì)角線(xiàn)OA2作正方形OA2A3B2 , …,依此規(guī)律,則點(diǎn)A8的坐標(biāo)是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在連長(zhǎng)為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)H,連接DH.下列結(jié)論正確的個(gè)數(shù)是( )
①△ABG∽△FDG;②HD平分∠EHG;③AG⊥BE;④S△HDG:S△HBG=tan∠DAG;⑤線(xiàn)段DH的最小值是2-2
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多邊形每一個(gè)內(nèi)角都等于150°,則從此多邊形一個(gè)頂點(diǎn)發(fā)出的對(duì)角線(xiàn)有( 。
A. 7條 B. 8條 C. 10條 D. 9條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分7分)
某校在藝術(shù)節(jié)選拔節(jié)目過(guò)程中,從備選的“街舞”、“爵士”、“民族”、“拉丁”四種類(lèi)型舞蹈中,選擇一種學(xué)生最喜愛(ài)的舞蹈,為此,隨機(jī)調(diào)查了本校的部分學(xué)生,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(每位學(xué)生只選擇一種類(lèi)型),根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問(wèn)題:
⑴ 本次抽樣調(diào)查的學(xué)生人數(shù)及a、b的值.
⑵ 將條形統(tǒng)計(jì)圖補(bǔ)充完整.
⑶ 若該校共有1500名學(xué)生,試估計(jì)全校喜歡“拉丁舞蹈”的學(xué)生人數(shù).
類(lèi)型 | 民族 | 拉丁 | 爵士 | 街舞 |
據(jù)點(diǎn)百分比 | a | 30% | b | 15% |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com