【題目】如圖,已知平行四邊形ABCD,AC=BC,ACB=45°,將三角形ABC沿著AC翻折B落在點E處,聯(lián)結(jié)DE,那么的值為________

【答案】

【解析】分析:依據(jù)△ACF和△DEF都是等腰直角三角形,設(shè)EF=DF=1,DE=,設(shè)AF=CF=xAC=EC=1+x.在RtACF,依據(jù)AF2+CF2=AC2,可得x2+x2=(x+12解得x=1+,即可得到AC=2+進(jìn)而得出==

詳解如圖,設(shè)ADCE交于點F,由折疊可得,ACE=ACB=45°,而∠DAC=ACB=45°,∴∠AFC=90°,EFD=90°,AF=CF由折疊可得,CE=AD,EF=DF,∴△ACF和△DEF都是等腰直角三角形設(shè)EF=DF=1,DE=,設(shè)AF=CF=x,AC=EC=1+xRtACFAF2+CF2=AC2,x2+x2=(x+12,解得x=1+x=1(舍去)AC=2+==

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,DCAB,ADBCBD平分∠ABC,A=60°.

求:(1)求∠CDB的度數(shù);

(2)當(dāng)AD=2時,求對角線BD的長和梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點,AD與過點C的切線互相垂直,垂足為點D,AD交O于點E,連接CE,CB.

(1)求證:CE=CB;

(2)若AC=,CE=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BCAB的夾角分別為45°68°,若點C到地面的距離CD28cm,坐墊中軸E處與點B的距離BE4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實數(shù)a,b,c在數(shù)軸上的位置如圖所示,則下列式子中一定成立的是( 。

A.|ab|a+bB.|a+c|a+c

C.|b+c|=﹣bcD.|a+bc|=﹣ab+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結(jié)AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點PA點出發(fā),按A→B→C的方向在ABBC上移動.記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是最大的負(fù)整數(shù),且、bc滿足(c52+|+b|=0,請回答問題.

1)請直接寫出b、c的值:= ,b= c= .

2、bc所對應(yīng)的點分別為A、B、C,點P為一動點,其對應(yīng)的數(shù)為x,點P01之間運動時(即0 ≤ x ≤ 1時),請化簡式子:|x+1||x1|+2|x-5|(請寫出化簡過程).

3)在(1)(2)的條件下,點A、BC開始在數(shù)軸上運動,若點A以每秒2個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位長度和8個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BCAB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:c=10,且a,b滿足(a+26)2+|b+c|=0,請回答問題:

(1)請直接寫出a,b,c的值:a=   ,b=   

(2)在數(shù)軸上a、b、c所對應(yīng)的點分別為A、B、C,記A、B兩點間的距離為AB,則AB=   ,AC=   ;

(3)在(1)(2)的條件下,若點M從點A出發(fā),以每秒1個單位長度的速度向右運動,當(dāng)點M到達(dá)點C時,點M停止;當(dāng)點M運動到點B時,點N從點A出發(fā),以每秒3個單位長度向右運動,點N到達(dá)點C后,再立即以同樣的速度返回,當(dāng)點N到達(dá)點A時,點N停止.從點M開始運動時起,至點M、N均停止運動為止,設(shè)時間為t秒,請用含t的代數(shù)式表示M,N兩點間的距離.

查看答案和解析>>

同步練習(xí)冊答案