【題目】如圖在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,則△BDE的周長(zhǎng)等于 .
【答案】10
【解析】解:∵AD平分∠CAB,AC⊥BC于點(diǎn)C,DE⊥AB于E,∴CD=DE. 又∵AD=AD,
∴Rt△ACD≌Rt△AED,∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周長(zhǎng)為DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=10.
(提示:設(shè)法將DE+BD+EB轉(zhuǎn)成線段AB).
所以答案是:10.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和角平分線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠A=60°,AB=4 ,點(diǎn)P在對(duì)角線AC上,且PB=PD=4,則∠PDC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與CD相交于點(diǎn)O,∠A=∠AOC,∠B=∠BOD.
求證:∠C=∠D.
證明:∵∠A=∠AOC,∠B=∠BOD(已知)
又∠AOC=∠BOD()
∴∠A=∠B()
∴AC∥BD()
∴∠C=∠D()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣(x﹣2)2+3的頂點(diǎn)坐標(biāo)是( )
A.(﹣2,3)
B.(2,3)
C.(2,﹣3)
D.(﹣2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC=12,BD=8,交點(diǎn)為點(diǎn)O,則邊AB的取值范圍為( )
A.1<AB<2
B.2<AB<10
C.4<AB<10
D.4<AB<20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船在港口P的南偏西60°方向,距港口86海里的A處,沿AP方向以每小時(shí)15海里的速度勻速駛向港口P.乙船從港口P出發(fā),沿南偏東45°方向勻速駛離港口PC=2x,現(xiàn)兩船同時(shí)出發(fā),2小時(shí)后乙船在甲船的正東方向.求乙船的航行速度.(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補(bǔ)角定義),∠1+∠2=180°(已知)
∴(同角的補(bǔ)角相等)①
∴(內(nèi)錯(cuò)角相等,兩直線平行)②
∴∠ADE=∠3()③
∵∠3=∠B()④
∴(等量代換)⑤
∴DE∥BC()⑥
∴∠AED=∠C()⑦
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com