【題目】如圖,在長方形ABCD中,AB=4cm,BC=8cm.E、F分別是AB、BC的中點.則E到DF的距離是_____cm.
【答案】3
【解析】
根據(jù)矩形的性質(zhì)得出CD=AB=4cm,AD=BC=8cm,∠A=∠B=∠C=∠D=90°,由已知條件求出AE、BE、BF、CF的長,根據(jù)勾股定理求出DF,求出△DEF的面積,作EG⊥DF于G,由三角形的面積求出EG即可.
解:∵四邊形ABCD是矩形,
∴CD=AB=4cm,AD=BC=8cm,∠A=∠B=∠C=∠D=90°,
∵E、F分別是AB、BC的中點,
∴AE=BE= AB=2cm,BF=CF= BC=4cm,
∴DF= =4 (cm),
∴△DEF的面積=矩形ABCD的面積﹣△BEF的面積﹣△CDF的面積﹣△ADE的面積
=8×4﹣ ×4×2﹣ ×4×4﹣ ×8×2
=12(cm2),
作EG⊥DF于G,如圖所示:
則△DEF的面積= DFEG=12,
∴EG= =3 (cm),
即E到DF的距離是3 cm,
故答案為:3 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與拋物線分別交于點A、點B,且點A在y軸上,拋物線的頂點C的坐標為.
(1)求拋物線的解析式;
(2)點P是線段AB上一動點,射線軸并與直線BC和拋物線分別交于點M、N,過點P作軸于點E,當PE與PM的乘積最大時,在y軸上找一點Q,使的值最大,求的最大值和此時Q的坐標;
(3)在拋物線上找一點D,使△ABD為直角三角形,求D點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點 A(,4)和點B(8,),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當時,直接寫出的解集;
(3)若點P是軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.
(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形AOBC中,OB=8,OA=4.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E.
(1)當點F運動到邊BC的中點時,求點E的坐標;
(2)連接EF、AB,求證:EF∥AB;
(3)如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是 ,從點燃到燃盡甲所用的時間為 .
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關(guān)系式;
(3)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內(nèi),甲蠟燭比乙蠟燭高?在什么時間段內(nèi),甲蠟燭比乙蠟低?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點P,Q運動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)點M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點M的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com