【題目】已知:如圖,點E,F分別在AB,CD上,AF⊥CE,垂足為點O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
請你仔細觀察下列序號所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
橫線處應(yīng)填寫的過程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
【答案】A
【解析】
先證CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定義得出∠AFC+∠2=90°,結(jié)合∠A+∠2=90°可以得出∠AFC=∠A,從而得證.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
③∵AF⊥CE(已知)
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯角相等,兩直線平行),
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A城氣象臺測得臺風中心在A城正西方向600km的B處,以每小時200km的速度向北偏東60°的方向移動,距臺風中心500km的范圍內(nèi)是受臺風影響的區(qū)域.
(1)A城是否受到這次臺風的影響?為什么?
(2)若A城受到這次臺風的影響,那么A城遭受這次臺風影響有多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格中,小格的頂點叫做格點。小華按下列要求作圖:①在正方形網(wǎng)格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;②連結(jié)三個格點,使之構(gòu)成直角三角形。小華在左邊的正方形網(wǎng)格中作出了Rt⊿ABC。請你按照同樣的要求,在右邊的兩個正方形網(wǎng)格中各畫出一個直角三角形,并使三個網(wǎng)格中的直角三角形互不全等。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某油箱容量為60L的汽車,加滿汽油后行駛了100km時,油箱中的汽油大約消耗了,如果加滿汽油后汽車行駛的路程為x(km),油箱中剩油量為y(L),則y與x之間的函數(shù)解析式和自變量取值范圍分別是( )
A. y=0.12x,x>0
B. y=60-0.12x,x>0
C. y=0.12x,0≤x≤500
D. y=60-0.12x,0≤x≤500
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中真命題的個數(shù)是( )
①平面內(nèi),過一點有且只有一條直線與已知直線平行;②這5個數(shù)中有2個是無理數(shù);③若,則點P(-m,5)在第一象限;④的算術(shù)平方根是4;⑤經(jīng)過一點有且只有一條直線與已知直線垂直;⑥同旁內(nèi)角互補.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使得點A移至圖中的點A'的位置.
(1)平移后所得△ABC的頂點B的坐標為 ,C的坐標為 ;
(2)平移過程中△ABC掃過的面積為 ;
(3)將直線AB以每秒1個單位長度的速度向右平移,則平移 秒時該直線恰好經(jīng)過點C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,,,
(1)畫出的邊上的高CH;
(2)將平移到(點和點對應(yīng),點和點對應(yīng),點和點對應(yīng)),若點的坐標為,請畫出平移后的;
(3)若,為平面內(nèi)一點,且滿足與全等,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)拼一拼,畫一畫:請你用4個長為a,寬為b的矩形拼成一個大正方形,并且正中間留下一個洞,這個洞恰好是一個小正方形。
(2)用不同方法計算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?
(3)當拼成的這個大正方形邊長比中間小正方形邊長多3cm時,它的面積就多24cm2,求中間小正方形的邊長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com