【題目】如圖,點,在拋物線上,且在該拋物線對稱軸的同側(cè)(點在點的左側(cè)),過點、分別作軸的垂線,分別交軸于點,交直線于點.設(shè)為四邊形的面積.則下列關(guān)系正確的是( )

A. S=y2+y1 B. S=y2+2y1 C. S=y2-y1 D. S=y2-2y1

【答案】C

【解析】

首先根據(jù)題意可求得:y1,y2的值,AC的坐標(biāo),即可用x1x2表示出AB,CD,BD的值,易得四邊形ABCD是直角梯形,即可得S=(AB+CD)BD,然后代入其取值,整理變形,即可求得Sy1、y2的數(shù)量關(guān)系式.

解:根據(jù)題意得:y1=ax12+bx1+c,y2=ax22+bx2+c,

A的坐標(biāo)為:(x1,2ax1+b),點C的坐標(biāo)為:(x2,2ax2+b),

∴AB=2ax1+b,CD=2ax2+b,BD=x2-x1

∵EB⊥BD,CD⊥BD,

∴AB∥CD,

∴四邊形ABCD是直角梯形,

∴S=(AB+CD)BD=(2ax1+b+2ax2+b)(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(ax22+bx2)-(ax12+bx1)=(ax22+bx2+c)-(ax12+bx1+c)=y2-y1

S=y2-y1

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,F是高ADBE的交點,CD=4,則線段DF的長為(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,AOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標(biāo)系中,O為原點,四邊形ABCO是矩形,點A,C的坐標(biāo)分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點B的坐標(biāo)為   ;

(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:;

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點的坐標(biāo)為.將點繞著原點按逆時針方向旋轉(zhuǎn)得到點,延長到點,使;再將點繞著原點按逆時針方向旋轉(zhuǎn)得到點,延長到點,使;…如此繼續(xù)下去.

求:(1)的坐標(biāo);(2)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊長方形紙片ABCD沿BD翻折后,點CE重合,若∠ADB30°,EH2cm,則BC的長度為( 。cm

A.8B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線圖象的一部分,已知拋物線的對稱軸是,與軸的一個交點是,有下列結(jié)論:

;

④拋物線與軸的另一個交點是;

⑤點,都在拋物線上,則有

其中正確的是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點、.若點的坐標(biāo)為點的坐標(biāo)為,

圓弧所在圓的圓心點的坐標(biāo)為________

是否在經(jīng)過點、三點的拋物線上;

的條件下,求證:直線的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當(dāng)PE=2PF時,AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點為BAC經(jīng)過圓心O并與圓相交于點DC,過C作直線CEAB,交AB的延長線于點E

1)求證:CB平分∠ACE

2)若BE=3,CE=4,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案