【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據圓周角定理得到∠BAC=90°,根據三角形的內角和得到∠ACB=60°根據切線的性質得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結論;
(2)根據S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結論;
(3)根據全等三角形的性質得到OE=OF,根據等腰三角形的性質得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據全等三角形的性質得到OG=OA,即可得到結論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結束】
25
【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標為 ;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設AD=x,矩形BDEF的面積為y,求y關于x的函數(shù)關系式(可利用①的結論),并求出y的最小值.
【答案】(1)(2,2);(2)存在.理由見解析;(3)①見解析;②y=x2﹣2x+4, y有最小值.
【解析】試題分析:(1)求出AB、BC的長即可解決問題;
(2)存在.連接BE,取BE的中點K,連接DK、KC.首先證明B、D、E、C四點共圓,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,觀察圖象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等邊三角形,推出DC=BC=2,由此即可解決問題;
(3)①由(2)可知,B、D、E、C四點共圓,推出∠DBC=∠DCE=30°,由此即可解決問題;
②作DH⊥AB于H.想辦法用x表示BD、DE的長,構建二次函數(shù)即可解決問題;
試題解析:(1)∵四邊形AOCB是矩形,∴BC=OA=2,OC=AB=,∠BCO=∠BAO=90°,∴B(,2).
故答案為:(,2).
(2)存在.理由如下:
連接BE,取BE的中點K,連接DK、KC.
∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四點共圓,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°
①如圖1中,△DEC是等腰三角形,觀察圖象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等邊三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2,∴當AD=2時,△DEC是等腰三角形.
②如圖2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=.
綜上所述,滿足條件的AD的值為2或.
(3)①由(2)可知,B、D、E、C四點共圓,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.
②如圖2中,作DH⊥AB于H.
在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==,∴BH=,在Rt△BDH中,BD==,∴DE=BD=,∴矩形BDEF的面積為y= =,即,∴,∵>0,∴當x=3時,y有最小值.
科目:初中數(shù)學 來源: 題型:
【題目】某校實行學案式教學,需印制若干份教學學案.印刷廠有,甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要,兩種印刷方式的費用y(元)與印刷份數(shù)x(份)之間的關系如圖所示.
(1)填空:甲種收費方式的函數(shù)關系式是__________,乙種收費方式的函數(shù)關系式是__________.
(2)該校某年級每次需印制100~450(含100和450)份學案,選擇哪種印刷方式較合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元。
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售。設購買個x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數(shù)關系式;
(3)小明準備聯(lián)系一部分同學集體購買同一品牌的計算器,若購買計算器的數(shù)量超過5個,購買哪種品牌的計算器更合算?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,點在邊上,聯(lián)結.
如圖,將沿著翻折,點的對應點是點,若平分,則的值等于 ;
若.將繞著點旋轉,使得點的對應點落在邊上,點的對應點分別是點,則的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經過圓心P,則k=________________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉40°得到△A1BC1,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
求證:ΔBCF≌ΔBA1D.
當∠C=40°時,請你證明四邊形A1BCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學積極倡導陽光體育運動,提高中學生身體素質,開展跳繩比賽,下表為該校6年1班40人參加跳繩比賽的情況,若標準數(shù)量為每人每分鐘100個.
(1)求6年1班40人一分鐘內平均每人跳繩多少個?
(2)規(guī)定跳繩超過標準數(shù)量,每多跳1個繩加3分;規(guī)定跳繩未達到標準數(shù)量,每少跳1個繩,扣1分,若班級跳繩總積分超過250分,便可得到學校的獎勵,通過計算說明6年1班能否得到學校獎勵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D、E分別在△ABC的邊AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個行駛過程中,甲、乙兩車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.
(1)求乙車離開A城的距離y關于t的函數(shù)解析式;
(2)求乙車的速度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com